login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275530 Smallest positive integer m such that (m^(2^n) + 1)/2 is prime. 2
3, 3, 3, 9, 3, 3, 3, 113, 331, 513, 827, 799, 3291, 5041, 71, 220221, 23891, 11559, 187503, 35963 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The terms of this sequence with n > 11 correspond to probable primes which are too large to be proven prime currently. - Serge Batalov, Apr 01 2018

a(15) is a statistically significant outlier; the sequence (m^(2^15)+1)/2 may require a double-check with software that is not GWNUM-based. - Serge Batalov, Apr 01 2018

LINKS

Table of n, a(n) for n=0..19.

Richard Fischer, Generalized Fermat numbers with odd base

Wikipedia, Fermat number

EXAMPLE

a(7) = 113 since 113 is the smallest positive integer m such that (m^(2^7)+1)/2 is prime.

MAPLE

a:= proc(n) option remember; local m; for m by 2

while not isprime((m^(2^n)+1)/2) do od; m

end:

seq(a(n), n=0..8);

MATHEMATICA

Table[m = 1; While[! PrimeQ[(m^(2^n) + 1)/2], m++]; m, {n, 0, 9}] (* Michael De Vlieger, Sep 23 2016 *)

PROG

(PARI) a(n) = {my(m = 1); while (! isprime((m^(2^n)+1)/2), m += 2); m; } \\ Michel Marcus, Aug 01 2016

(Python)

from sympy import isprime

def a(n):

m, pow2 = 1, 2**n

while True:

if isprime((m**pow2 + 1)//2): return m

m += 2

print([a(n) for n in range(9)]) # Michael S. Branicky, Mar 03 2021

CROSSREFS

Cf. A056993, A027862.

Sequence in context: A226509 A329694 A183389 * A180637 A201539 A223747

Adjacent sequences: A275527 A275528 A275529 * A275531 A275532 A275533

KEYWORD

nonn,more

AUTHOR

Walter Kehowski, Jul 31 2016

EXTENSIONS

a(13)-a(14) from Robert Price, Sep 23 2016

a(15) from Serge Batalov, Mar 29 2018

a(16) from Serge Batalov, Mar 30 2018

a(17) from Serge Batalov, Apr 01 2018

a(18)-a(19) from Ryan Propper, Aug 16 2022. These correspond to 1382288- and 2388581-digit PRPs, respectively, found using an exhaustive search with Jean Penne's LLR2.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 04:34 EDT 2023. Contains 361627 sequences. (Running on oeis4.)