login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183389
Half the number of n X 5 binary arrays with no element unequal to a strict majority of its king-move neighbors.
1
3, 3, 3, 8, 21, 49, 136, 355, 933, 2502, 6653, 17823, 47798, 128301, 344943, 927972, 2498033, 6728001, 18126410, 48849585, 131672723, 354973646, 957076001, 2580677445, 6959034768, 18766590985, 50610139265, 136490237350, 368107422167
OFFSET
1,1
COMMENTS
Column 5 of A183391.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 5*a(n-2) - 4*a(n-3) - 11*a(n-4) - 3*a(n-5) + 4*a(n-6) - 8*a(n-7) + 10*a(n-9) - 2*a(n-10) - a(n-11) for n>12.
Empirical g.f.: x*(3 - 3*x - 18*x^2 - x^3 + 35*x^4 + 21*x^5 - 5*x^6 + 31*x^7 + 6*x^8 - 31*x^9 + 3*x^10 + 3*x^11) / (1 - 2*x - 5*x^2 + 4*x^3 + 11*x^4 + 3*x^5 - 4*x^6 + 8*x^7 - 10*x^9 + 2*x^10 + x^11). - Colin Barker, Mar 28 2018
EXAMPLE
Some solutions with a(1,1)=0 for 7 X 5:
..0..0..0..1..1....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..1..1....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..1....0..0..0..0..0....1..1..0..0..0....1..1..1..0..0
..0..0..0..0..1....0..0..0..1..1....1..1..1..1..1....1..1..1..1..1
..0..0..0..1..1....0..0..1..1..1....0..0..1..1..1....0..0..1..1..1
..0..0..0..1..1....1..1..1..1..1....0..0..0..1..1....0..0..0..0..0
..0..0..0..1..1....1..1..1..1..1....0..0..0..1..1....0..0..0..0..0
CROSSREFS
Cf. A183391.
Sequence in context: A241739 A226509 A329694 * A275530 A180637 A362376
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 04 2011
STATUS
approved