login
A275475
Primes p such that p+2^3, p+2^5 and p+2^7 are all primes.
1
11, 29, 71, 149, 491, 599, 701, 1439, 1451, 2339, 3761, 4211, 5399, 5651, 6269, 6701, 7541, 9059, 9311, 9689, 9941, 10859, 11831, 12569, 12791, 13679, 15299, 15551, 16979, 18089, 19301, 19469, 22031, 22541, 23549, 23879, 25229, 25841, 27329, 27791, 28541, 30809
OFFSET
1,1
LINKS
EXAMPLE
11 is in the sequence because 11+8 = 19, 11+32 = 43 and 11+128 = 139 are all primes.
29 is in the sequence because 29+8 = 37, 29+32 = 61 and 29+128 = 157 are all primes.
MATHEMATICA
Select[Prime@ Range@ 3450, Function[k, Times @@ Boole@ PrimeQ@ Map[k + 2^# &, {3, 5, 7}] == 1]] (* Michael De Vlieger, Aug 10 2016 *)
Select[Prime[Range[4000]], AllTrue[#+{8, 32, 128}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 26 2018 *)
PROG
(Perl) use ntheory ":all"; say for sieve_prime_cluster(2, 1e6, 2**3, 2**5, 2**7); # Dana Jacobsen, Sep 29 2016
CROSSREFS
Cf. A275485 (a subsequence).
Sequence in context: A106881 A239734 A106880 * A135064 A179502 A053703
KEYWORD
nonn
AUTHOR
STATUS
approved