login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053703
Primes q of form q=p^w+2 where p is odd prime, w>=2.
5
11, 29, 83, 127, 6563, 24391, 59051, 161053, 357913, 571789, 1442899, 4782971, 5177719, 14348909, 18191449, 30080233, 73560061, 80062993, 118370773, 127263529, 131872231, 318611989, 344472103
OFFSET
1,1
COMMENTS
For even w, p=3 is the only prime for which p^w+2 can be prime because all primes greater than 3 have the form 6k+-1. For odd w, only primes p=3 and p=6k-1 need to be considered because all primes of the form p=6k+1 will produce a number p^w+2 that is divisible by 3. - T. D. Noe, Feb 25 2011
FORMULA
Primes of A025475(n)+2 form, excluding 1+2.
a(n) = A053702(n)+2. [R. J. Mathar, Apr 18, 2010]
EXAMPLE
11=3^2+2, 127=5^3+2, 83=3^4+2, 161051=11^5+2,.. 318611989=683^2+2, 344472103=701^3+2
MATHEMATICA
lst={}; Do[p=Prime[n]; fi=FactorInteger[p-2]; If[Length[fi]==1 && Last[Last[fi]]>1, AppendTo[lst, p]], {n, 20000000}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 25 2011 *)
nn=10^9; t=Table[Select[Table[2 + Prime[i]^k, {i, PrimePi[nn^(1/k)]}], PrimeQ], {k, 2, Log[3, nn]}]; Union[Flatten[t]] (* T. D. Noe, Feb 25 2011 *)
CROSSREFS
Cf. A025475.
Sequence in context: A275475 A135064 A179502 * A216559 A099911 A118638
KEYWORD
nonn
AUTHOR
Labos Elemer, Feb 14 2000
EXTENSIONS
Constraint on w added to definition. a(11) appended by R. J. Mathar, Apr 18 2010
STATUS
approved