OFFSET
1,1
COMMENTS
For even w, p=3 is the only prime for which p^w+2 can be prime because all primes greater than 3 have the form 6k+-1. For odd w, only primes p=3 and p=6k-1 need to be considered because all primes of the form p=6k+1 will produce a number p^w+2 that is divisible by 3. - T. D. Noe, Feb 25 2011
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1005
FORMULA
Primes of A025475(n)+2 form, excluding 1+2.
a(n) = A053702(n)+2. [R. J. Mathar, Apr 18, 2010]
EXAMPLE
11=3^2+2, 127=5^3+2, 83=3^4+2, 161051=11^5+2,.. 318611989=683^2+2, 344472103=701^3+2
MATHEMATICA
lst={}; Do[p=Prime[n]; fi=FactorInteger[p-2]; If[Length[fi]==1 && Last[Last[fi]]>1, AppendTo[lst, p]], {n, 20000000}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 25 2011 *)
nn=10^9; t=Table[Select[Table[2 + Prime[i]^k, {i, PrimePi[nn^(1/k)]}], PrimeQ], {k, 2, Log[3, nn]}]; Union[Flatten[t]] (* T. D. Noe, Feb 25 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Feb 14 2000
EXTENSIONS
Constraint on w added to definition. a(11) appended by R. J. Mathar, Apr 18 2010
STATUS
approved