OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^2)^7 / (f(x) * f(x^2)^2) in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-3/8) * eta(q) * eta(q^2)^6 * eta(q^8)^2 / eta(q^4)^5 in powers of q.
Euler transform of period 8 sequence [ -1, -7, -1, -2, -1, -7, -1, -4, ...].
G.f.: Product_{k>0} (1 - x^k)^4 * (1 + x^k)^3 * (1 + x^(4*k))^2 / (1 + x^(2*k))^3.
2 * a(n) = - A279955(2*n + 1).
EXAMPLE
G.f. = 1 - x - 7*x^2 + 6*x^3 + 20*x^4 - 13*x^5 - 34*x^6 + 15*x^7 + 53*x^8 + ...
G.f. = q^3 - q^11 - 7*q^19 + 6*q^27 + 20*q^35 - 13*q^43 - 34*q^51 + 15*q^59 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^2]^4 / EllipticTheta[ 3, 0, x^2], {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^7 / (QPochhammer[ -x] QPochhammer[ -x^2]^2), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A)^6 * eta(x^8 + A)^2 / eta(x^4 + A)^5, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Dec 25 2016
STATUS
approved