OFFSET
1,1
LINKS
Steven R. Finch, Convex Hull of Two Orthogonal Disks, arXiv:1211.4514v3 [math.MG] 2016 p. 15.
FORMULA
omega = arcsin(sqrt(sqrt(2) - 1)),
gamma = (sqrt(2)-1)/2+E(omega, -1)+sqrt(2)(EllipticPi(-sqrt(2)-1,omega,-1) + EllipticPi(sqrt(2)-1,omega,-1)-F(omega,-1)),
VL = (8*gamma)/(3*sqrt(2)), where E is the complete elliptic integral of the second kind, EllipticPi is the incomplete elliptic integral of the third kind and F is the elliptic integral of the first kind.
EXAMPLE
3.28181948744968941903219331047186568800423705235770280145947014746...
MATHEMATICA
omega = ArcSin[Sqrt[Sqrt[2] - 1]];
gamma = (Sqrt[2] - 1)/2 + EllipticE[omega, -1] + Sqrt[2] (EllipticPi[ -Sqrt[2] - 1, omega, -1] + EllipticPi[Sqrt[2] - 1, omega, -1] - EllipticF[omega, -1]);
VL = (8*gamma)/(3*Sqrt[2]);
RealDigits[VL, 10, 101][[1]]
RealDigits[2/3 (4 EllipticE[ArcTan[2^(1/4)], 1/2] - 2 Sqrt[2] EllipticF[ArcTan[2^(1/4)], 1/2] + 2 (Sqrt[2] + 1) EllipticPi[-1/Sqrt[2], ArcTan[2^(1/4)], 1/2] + 2 (Sqrt[2] - 1) EllipticPi[1/Sqrt[2], ArcTan[2^(1/4)], 1/2] + Sqrt[2] - 2), 10, 101][[1]] (* Jan Mangaldan, Jan 04 2017 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Jul 25 2016
STATUS
approved