login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274938
Number of unlabeled forests with n nodes that have two components, neither of which is the empty graph.
4
0, 0, 0, 1, 1, 3, 5, 11, 21, 46, 96, 216, 482, 1121, 2633, 6334, 15414, 38132, 95321, 241029, 614862, 1582030, 4099922, 10697038, 28074752, 74086468, 196469601, 523383136, 1400048426, 3759508536, 10131089877, 27391132238, 74283533023, 202030012554, 550934011491, 1506161266348
OFFSET
0,6
LINKS
FORMULA
G.f.: [A(x)^2 - A(x^2)]/2 where A(x) is the o.g.f. for A000055 without the initial constant 1.
a(2n+1) = A274937(2n+1). a(2n) = A274937(2n)-A000055(n). - R. J. Mathar, Jul 20 2016
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n<2, n, (add(add(d*
b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; `if`(n=0, 1, b(n)-add(b(j)*
b(n-j), j=0..n/2)+`if`(n::odd, 0, (t->t*(t+1)/2)(b(n/2))))
end:
a:= proc(n) option remember; add(g(j)*g(n-j), j=1..n/2)-
`if`(n::odd or n=0, 0, (t-> t*(t+1)/2)(g(n/2)))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jul 20 2016
MATHEMATICA
b[n_] := b[n] = If[n<2, n, Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}]/(n-1)];
g[n_] := g[n] = If[n==0, 1, b[n]-Sum[b[j]*b[n-j], {j, 0, n/2}]+If[OddQ[n], 0, Function[t, t*(t+1)/2][b[n/2]]]];
a[n_] := a[n] = Sum[g[j]*g[n-j], {j, 1, n/2}]-If[OddQ[n] || n==0, 0, Function[t, t*(t+1)/2][g[n/2]]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 15 2017, after Alois P. Heinz *)
CROSSREFS
Cf. A000055, A274935-A274937. [A274935, A274936, A274937, A274938] are analogs for forests of [A275165, A275166, A216785, A274934] for graphs.
Sequence in context: A283905 A146574 A007873 * A283603 A283818 A352006
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 19 2016
STATUS
approved