OFFSET
1,6
COMMENTS
No odd number squared is expressible as (p+1)(q+1) where p and q are distinct primes, since q must be odd and therefore (q+1) is even.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 0 since 2 is not expressible as (p+1)(q+1); same for a(2); a(3) = 1 since 6^2 = 36 = (2+1)(11+1); a(6) = 3 since 12^2 = 144 = (2+1)(47+1) = (5+1)(23+1) = (7+1)(17+1); a(9) = 2 since 18^2 = 324 = (2+1)(107+1) = (5+1)(53+1); etc.
MATHEMATICA
f[n_] := Block[{c = 0, p = 2}, While[p < 2n -1, If[ PrimeQ[(2n)^2/(p +1) -1], c++]; p = NextPrime@ p]; c]; Array[f, 105]
PROG
(PARI) a(n)=sumdiv(4*n^2, d, d<2*n && isprime(d-1) && isprime(4*n^2/d-1)) \\ Charles R Greathouse IV, Jul 10 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov and Robert G. Wilson v, Jul 10 2016
STATUS
approved