login
A274774
Least k such that sigma(k*n)/tau(k*n) = sigma(k*n+1)/tau(k*n+1), or 0 if no such k exists.
0
5, 7, 895, 1363, 1, 3353, 2, 2589, 1007, 10341, 1265, 1726, 7, 1, 179, 6634, 10052, 5745, 86, 53389, 958, 12165, 58, 863, 649, 250017, 2395, 6103, 46, 3447, 2714, 3317, 8110, 5026, 22653, 2812637, 94, 43, 16795, 58069, 61693, 479, 38, 52790, 1437, 29, 74, 2027510, 122367, 70545
OFFSET
1,1
COMMENTS
Corresponding averages are 3, 6, 540, 840, 3, 2880, 6, 3240, 1170, 8640, 1596, 3240, 28, 6, 540, 9072, 15120, 8640, 330, 55440, 2880, 21924, 270, 3240, 1860, 875070, 7200, ...
EXAMPLE
a(13) = 7 because sigma(7*13)/tau(7*13) = sigma(7*13+1)/tau(7*13+1).
MATHEMATICA
a[n_] := Block[{k=1}, While[! Equal @@ (DivisorSigma[1, n*k + {0, 1}] / DivisorSigma[ 0, n*k + {0, 1}]), k++]; k]; Array[a, 20] (* Giovanni Resta, Jul 28 2016 *)
PROG
(PARI) a(n) = {my(k=1); while (sigma(k*n)/numdiv(k*n) != sigma(k*n+1)/numdiv(k*n+1), k++); k; }
CROSSREFS
Cf. A238380.
Sequence in context: A083687 A101829 A056252 * A370190 A176599 A309409
KEYWORD
nonn
AUTHOR
Altug Alkan, Jul 28 2016
STATUS
approved