login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083687
Numerator of B(2n)*H(2n)/n*(-1)^(n+1) where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
3
1, 5, 7, 761, 671, 4572347, 1171733, 518413759, 32956355893, 1949885751497, 21495895979, 63715389517501781, 22630025105469577, 36899945775958445129, 517210776697519633301437, 4518133367201930332907311663
OFFSET
1,2
LINKS
Ira Gessel, On Miki's identity for Bernoulli numbers J. Number Theory 110 (2005), no. 1, 75-82.
FORMULA
Miki's identity : B(n)*H(n)*(2/n) = sum(i=2, n-2, B(i)/i*B(n-i)/(n-i)*(1-C(n, i)))
MATHEMATICA
Table[ BernoulliB[2n] * HarmonicNumber[2n] / n // Numerator // Abs, {n, 1, 16}] (* Jean-François Alcover, Mar 24 2015 *)
PROG
(PARI) a(n)=numerator((-1)^(n+1)*bernfrac(2*n)*sum(k=1, 2*n, 1/k)/n)
(Python)
from sympy import bernoulli, harmonic, numer
def a(n):
return numer(bernoulli(2 * n) * harmonic(2 * n) * (-1)**(n + 1) / n)
[a(n) for n in range(1, 31)] # Indranil Ghosh, Aug 04 2017
CROSSREFS
Cf. A083688.
Sequence in context: A020467 A089344 A114363 * A101829 A056252 A274774
KEYWORD
frac,nonn
AUTHOR
Benoit Cloitre, Jun 15 2003
STATUS
approved