login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274365
Numbers n such that n and n+1 both have 30 divisors.
2
180224, 257499, 579375, 1075599, 1990575, 2353616, 5598800, 10320624, 11560400, 13975983, 16951599, 17213552, 17651600, 17672499, 17784207, 20626991, 20660624, 21041775, 21912848, 22252400, 24533199, 24953103, 26161875, 26604207, 29232175, 29253392
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
SequencePosition[Table[If[DivisorSigma[0, n]==30, 1, 0], {n, 3*10^7}], {1, 1}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 10 2018 *)
PROG
(PARI) is(n)=numdiv(n)==30 && numdiv(n+1)==30
(PARI) list(lim)=my(v=List(), t); forprime(p=2, sqrtnint(lim\2, 14), my(p14=p^14); forprime(q=2, lim\p14, if(p==q, next); t=p14*q; if(numdiv(t+1)==30, listput(v, t)); if(numdiv(t-1)==30, listput(v, t-1)))); forprime(p=2, sqrtnint(lim\4, 9), my(p9=p^9); forprime(q=2, sqrtint(lim\p9), if(p==q, next); t=p9*q^2; if(numdiv(t+1)==30, listput(v, t)); if(numdiv(t-1)==30, listput(v, t-1)))); forprime(p=2, sqrtnint(lim\16, 5), my(p5=p^5); forprime(q=2, sqrtnint(lim\p5, 4), if(p==q, next); t=p5*q^4; if(numdiv(t+1)==30, listput(v, t)); if(numdiv(t-1)==30, listput(v, t-1)))); forprime(p=2, sqrtnint(lim\12, 4), my(p4=p^4); forprime(q=2, sqrtint(lim\p4\2), if(p==q, next); my(q2=q^2); forprime(r=2, lim\p4\q2, if(p==r || q==r, next); t=p4*q2*r; if(numdiv(t+1)==30, listput(v, t)); if(numdiv(t-1)==30, listput(v, t-1))))); Set(v)
CROSSREFS
Intersection of A005237 and A137493.
Sequence in context: A060232 A190380 A235716 * A209828 A133541 A145536
KEYWORD
nonn
AUTHOR
STATUS
approved