|
|
A274331
|
|
Numbers k such that (148*10^k - 1)/3 is prime.
|
|
0
|
|
|
2, 3, 4, 5, 9, 27, 35, 44, 88, 104, 205, 290, 302, 381, 400, 686, 917, 1150, 2278, 2757, 3220, 3316, 7469, 9535, 21442, 46409, 103718, 123688, 147139
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers k such that the digits 49 followed by k occurrences of the digit 3 is prime (see Example section).
a(30) > 2*10^5.
|
|
LINKS
|
Table of n, a(n) for n=1..29.
Makoto Kamada, Factorization of near-repdigit-related numbers.
Makoto Kamada, Search for 493w.
|
|
EXAMPLE
|
3 is in this sequence because (148*10^3-1)/3 = 233329 is prime.
Initial terms and primes associated:
a(1) = 2, 4933;
a(2) = 3, 49333;
a(3) = 4, 493333;
a(4) = 5, 4933333;
a(5) = 9, 49333333333, etc.
|
|
MATHEMATICA
|
Select[Range[0, 100000], PrimeQ[(148*10^# - 1)/3] &]
|
|
PROG
|
(PARI) is(n)=ispseudoprime((148*10^n - 1)/3) \\ Charles R Greathouse IV, Jun 13 2017
|
|
CROSSREFS
|
Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
Sequence in context: A162374 A323289 A065885 * A177064 A092233 A115895
Adjacent sequences: A274328 A274329 A274330 * A274332 A274333 A274334
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Robert Price, Jun 18 2016
|
|
EXTENSIONS
|
a(27)-a(29) from Robert Price, Mar 18 2020
|
|
STATUS
|
approved
|
|
|
|