Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 26 2024 14:58:53
%S 2,3,4,5,9,27,35,44,88,104,205,290,302,381,400,686,917,1150,2278,2757,
%T 3220,3316,7469,9535,21442,46409,103718,123688,147139
%N Numbers k such that (148*10^k - 1)/3 is prime.
%C Numbers k such that the digits 49 followed by k occurrences of the digit 3 is prime (see Example section).
%C a(30) > 2*10^5.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 493w</a>.
%e 3 is in this sequence because (148*10^3-1)/3 = 233329 is prime.
%e Initial terms and associated primes:
%e a(1) = 2, 4933;
%e a(2) = 3, 49333;
%e a(3) = 4, 493333;
%e a(4) = 5, 4933333;
%e a(5) = 9, 49333333333, etc.
%t Select[Range[0, 100000], PrimeQ[(148*10^# - 1)/3] &]
%o (PARI) is(n)=ispseudoprime((148*10^n - 1)/3) \\ _Charles R Greathouse IV_, Jun 13 2017
%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
%K nonn,more
%O 1,1
%A _Robert Price_, Jun 18 2016
%E a(27)-a(29) from _Robert Price_, Mar 18 2020