The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274254 Number of partitions of n^11 into at most three parts. 5
1, 1, 350550, 2615176875, 1466017600854, 198682173665365, 10968475501587457, 325818421703912376, 6148914695531484502, 82064241864324799212, 833333333383333333334, 6783562449045969261416, 46005119909741205651457, 267653239830467338960133 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
Coefficient of x^(n^11) in 1/((1-x)*(1-x^2)*(1-x^3)).
G.f.: (1 -20*x +350738*x^2 +2607814224*x^3 +1411172155915*x^4 +168441916780374*x^5 +7099123683305188*x^6 +135099678234258306*x^7 +1347312342856212192*x^8 +7787883425074758928*x^9 +28110747299021064172*x^10 +67156060497799730456*x^11 +111034930795496260254*x^12 +130841757853019123380*x^13 +111034930795581623376*x^14 +67156060497892295980*x^15 +28110747298805651529*x^16 +7787883425149430772*x^17 +1347312342924772018*x^18 +135099678177816904*x^19 +7099123689451223*x^20 +168441921705222*x^21 +1411171249180*x^22 +2607681186*x^23 +348502*x^24) / ((1 -x)^23*(1 +x)*(1 +x +x^2)).
a(n) = A001399(n^11) = round((n^11+3)^2/12). - Alois P. Heinz, Jun 16 2016
PROG
(PARI)
\\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)*(1-x^3)).
b(n) = round(real((47+9*(-1)^n + 8*exp(-2/3*I*n*Pi) + 8*exp((2*I*n*Pi)/3) + 36*n+6*n^2)/72))
vector(50, n, n--; b(n^11))
CROSSREFS
A subsequence of A001399.
Cf. A274250 (n^2), A274251 (n^3), A274252 (n^5), A274253 (n^7).
Sequence in context: A022208 A213018 A274245 * A122036 A186822 A251246
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jun 16 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 19:19 EDT 2024. Contains 373401 sequences. (Running on oeis4.)