login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022208
Gaussian binomial coefficients [ n,9 ] for q = 4.
1
1, 349525, 97734250405, 26027119554103525, 6849609413493939400165, 1797339217481455290934231525, 471276749188750005563056686387685, 123549912998815788062283863044996567525
OFFSET
9,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^9/((1-x)*(1-4*x)*(1-16*x)*(1-64*x)*(1-256*x)*(1-1024*x)*(1-4096*x)*(1-16384*x)*(1-65536*x)*(1-262144*x)). - Vincenzo Librandi, Aug 11 2016
a(n) = Product_{i=1..9} (4^(n-i+1)-1)/(4^i-1), by definition. - Vincenzo Librandi, Aug 11 2016
MATHEMATICA
Table[QBinomial[n, 9, 4], {n, 9, 20}] (* Vincenzo Librandi, Aug 11 2016 *)
PROG
(Sage) [gaussian_binomial(n, 9, 4) for n in range(9, 17)] # Zerinvary Lajos, May 25 2009
(Magma) r:=9; q:=4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 11 2016
(PARI) r=9; q=4; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 04 2018
CROSSREFS
Sequence in context: A166263 A338515 A069314 * A213018 A274245 A274254
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 11 2016
STATUS
approved