OFFSET
1,1
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..3001 (all terms from Charles R Greathouse IV except for a(58)=174)
Bjorn Poonen, Edward F. Schaefer, and Michael Stoll, Twists of X(7) and primitive solutions to x^2+y^3=z^7, arXiv:math/0508174 [math.NT], 2005; Duke Math. J. 137:1 (2007), pp. 103-158.
MATHEMATICA
okQ[n_] := Module[{a, b}, For[b = 1, b < n^(7/3), b++, If[IntegerQ[a = Sqrt[n^7 - b^3]] && a > 0, Print["n = ", n, ", a = ", a, ", b = ", b]; Return[True]]]; False];
Reap[For[n = 1, n < 200, n++, If[okQ[n], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jan 30 2019 *)
PROG
(PARI) isA055394(n)=for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0
is(n)=isA055394(n^7)
(Sage) # Sage cannot handle n = 123, 174, ... without the fallback, even with descent_second_limit = 1000.
def fallback(n):
return gp("my(n=" + str(n) + "); for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0")
def isA055394(z):
z7 = z^7
E = EllipticCurve([0, z7], descent_second_limit = 1000)
try:
for c in E.integral_points():
if c[0] < 0 and c[1] != 0:
return True
return False
except RuntimeError:
return fallback(z7)
[x for x in range(1, 201) if isA055394(x)]
CROSSREFS
KEYWORD
nonn
AUTHOR
Charles R Greathouse IV, Jun 06 2016
EXTENSIONS
Missing term 174 inserted by Jean-François Alcover, Jan 30 2019
STATUS
approved