login
A274035
Numbers n such that n^7 = a^2 + b^3 for positive integers a and b.
3
2, 5, 8, 9, 10, 12, 15, 17, 24, 26, 28, 31, 33, 36, 37, 40, 43, 44, 46, 50, 52, 54, 56, 57, 63, 65, 68, 69, 72, 73, 76, 80, 82, 89, 91, 98, 100, 101, 108, 113, 122, 126, 127, 128, 129, 134, 136, 141, 145, 148, 150, 152, 161, 164, 168, 170, 171, 174, 177, 183, 185, 189, 192, 196, 197
OFFSET
1,1
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..3001 (all terms from Charles R Greathouse IV except for a(58)=174)
Bjorn Poonen, Edward F. Schaefer, and Michael Stoll, Twists of X(7) and primitive solutions to x^2+y^3=z^7, arXiv:math/0508174 [math.NT], 2005; Duke Math. J. 137:1 (2007), pp. 103-158.
MATHEMATICA
okQ[n_] := Module[{a, b}, For[b = 1, b < n^(7/3), b++, If[IntegerQ[a = Sqrt[n^7 - b^3]] && a > 0, Print["n = ", n, ", a = ", a, ", b = ", b]; Return[True]]]; False];
Reap[For[n = 1, n < 200, n++, If[okQ[n], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jan 30 2019 *)
PROG
(PARI) isA055394(n)=for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0
is(n)=isA055394(n^7)
(Sage) # Sage cannot handle n = 123, 174, ... without the fallback, even with descent_second_limit = 1000.
def fallback(n):
return gp("my(n=" + str(n) + "); for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0")
def isA055394(z):
z7 = z^7
E = EllipticCurve([0, z7], descent_second_limit = 1000)
try:
for c in E.integral_points():
if c[0] < 0 and c[1] != 0:
return True
return False
except RuntimeError:
return fallback(z7)
[x for x in range(1, 201) if isA055394(x)]
CROSSREFS
Sequence in context: A076871 A070049 A085254 * A068537 A047620 A283205
KEYWORD
nonn
AUTHOR
EXTENSIONS
Missing term 174 inserted by Jean-François Alcover, Jan 30 2019
STATUS
approved