login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274035
Numbers n such that n^7 = a^2 + b^3 for positive integers a and b.
3
2, 5, 8, 9, 10, 12, 15, 17, 24, 26, 28, 31, 33, 36, 37, 40, 43, 44, 46, 50, 52, 54, 56, 57, 63, 65, 68, 69, 72, 73, 76, 80, 82, 89, 91, 98, 100, 101, 108, 113, 122, 126, 127, 128, 129, 134, 136, 141, 145, 148, 150, 152, 161, 164, 168, 170, 171, 174, 177, 183, 185, 189, 192, 196, 197
OFFSET
1,1
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..3001 (all terms from Charles R Greathouse IV except for a(58)=174)
Bjorn Poonen, Edward F. Schaefer, and Michael Stoll, Twists of X(7) and primitive solutions to x^2+y^3=z^7, arXiv:math/0508174 [math.NT], 2005; Duke Math. J. 137:1 (2007), pp. 103-158.
MATHEMATICA
okQ[n_] := Module[{a, b}, For[b = 1, b < n^(7/3), b++, If[IntegerQ[a = Sqrt[n^7 - b^3]] && a > 0, Print["n = ", n, ", a = ", a, ", b = ", b]; Return[True]]]; False];
Reap[For[n = 1, n < 200, n++, If[okQ[n], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jan 30 2019 *)
PROG
(PARI) isA055394(n)=for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0
is(n)=isA055394(n^7)
(Sage) # Sage cannot handle n = 123, 174, ... without the fallback, even with descent_second_limit = 1000.
def fallback(n):
return gp("my(n=" + str(n) + "); for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0")
def isA055394(z):
z7 = z^7
E = EllipticCurve([0, z7], descent_second_limit = 1000)
try:
for c in E.integral_points():
if c[0] < 0 and c[1] != 0:
return True
return False
except RuntimeError:
return fallback(z7)
[x for x in range(1, 201) if isA055394(x)]
CROSSREFS
Sequence in context: A076871 A070049 A085254 * A068537 A047620 A283205
KEYWORD
nonn
AUTHOR
EXTENSIONS
Missing term 174 inserted by Jean-François Alcover, Jan 30 2019
STATUS
approved