Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Feb 28 2020 02:03:29
%S 2,5,8,9,10,12,15,17,24,26,28,31,33,36,37,40,43,44,46,50,52,54,56,57,
%T 63,65,68,69,72,73,76,80,82,89,91,98,100,101,108,113,122,126,127,128,
%U 129,134,136,141,145,148,150,152,161,164,168,170,171,174,177,183,185,189,192,196,197
%N Numbers n such that n^7 = a^2 + b^3 for positive integers a and b.
%H Jean-François Alcover, <a href="/A274035/b274035.txt">Table of n, a(n) for n = 1..3001</a> (all terms from Charles R Greathouse IV except for a(58)=174)
%H Bjorn Poonen, Edward F. Schaefer, and Michael Stoll, <a href="http://arxiv.org/abs/math/0508174">Twists of X(7) and primitive solutions to x^2+y^3=z^7</a>, arXiv:math/0508174 [math.NT], 2005; Duke Math. J. 137:1 (2007), pp. 103-158.
%t okQ[n_] := Module[{a, b}, For[b = 1, b < n^(7/3), b++, If[IntegerQ[a = Sqrt[n^7 - b^3]] && a > 0, Print["n = ", n, ", a = ", a, ", b = ", b]; Return[True]]]; False];
%t Reap[For[n = 1, n < 200, n++, If[okQ[n], Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Jan 30 2019 *)
%o (PARI) isA055394(n)=for(k=1,sqrtnint(n-1,3),if(issquare(n-k^3),return(1)));0
%o is(n)=isA055394(n^7)
%o (Sage) # Sage cannot handle n = 123, 174, ... without the fallback, even with descent_second_limit = 1000.
%o def fallback(n):
%o return gp("my(n=" + str(n) + ");for(k=1,sqrtnint(n-1,3),if(issquare(n-k^3),return(1)));0")
%o def isA055394(z):
%o z7 = z^7
%o E = EllipticCurve([0,z7], descent_second_limit = 1000)
%o try:
%o for c in E.integral_points():
%o if c[0] < 0 and c[1] != 0:
%o return True
%o return False
%o except RuntimeError:
%o return fallback(z7)
%o [x for x in range(1, 201) if isA055394(x)]
%Y Cf. A055394, A174115.
%K nonn
%O 1,1
%A _Charles R Greathouse IV_, Jun 06 2016
%E Missing term 174 inserted by _Jean-François Alcover_, Jan 30 2019