login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A273998
Number of endofunctions on [n] whose cycle lengths are primes.
6
1, 0, 1, 8, 75, 904, 13255, 229536, 4587961, 103971680, 2634212961, 73787255200, 2264440519891, 75563445303072, 2724356214102055, 105546202276277504, 4373078169296869425, 192970687573630633216, 9035613818754820178689, 447469496697658409400960
OFFSET
0,4
LINKS
MAPLE
b:= proc(n) option remember; local r, p;
if n=0 then 1 else r, p:=0, 2;
while p<=n do r:= r+(p-1)!*b(n-p)*
binomial(n-1, p-1); p:= nextprime(p)
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
MATHEMATICA
b[n_] := b[n] = Module[{r, p}, If[n == 0, 1, {r, p} = {0, 2}; While[p <= n, r = r + (p - 1)!*b[n - p]*Binomial[n-1, p-1]; p = NextPrime[p]]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 06 2016
STATUS
approved