login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088376
Numbers n such that n divides the concatenation of all divisors of n in ascending order other than 1 and n itself.
0
8, 75, 1875, 3267, 5625, 46875, 1171875, 3951075
OFFSET
1,1
EXAMPLE
a{2}=75 because the divisors of 75 are 1, 3, 5, 15, 25 and 75, excluding 1 and 75 and concatenating in ascending order yields 351525 which is divisible by 75 (351525/75 = 4687).
MAPLE
divisorCat := proc(upLim, timeLimit, dvc) local s, m, n, d, t, f, startTime, startSet; startTime := time(); s := dvc[1]; m := dvc[2]; for n from s to upLim while time()-startTime<timeLimit do; d := divisors(n); d := d minus {1, n}; if d<>{} then t := ""; for f in d do; t := sprintf("%s%d", t, f); od; if parse(t) mod n = 0 then m := m union {n}; print(n, d, t, parse(t)/n); fi; fi; if n mod 10000=0 then printf("%10.4f secs ... testing %d ", time()-startTime, n) fi; od; [n-1, m]; end;
MATHEMATICA
Select[Range[2, 1000000], !PrimeQ[#]&&Divisible[FromDigits[ Flatten[ IntegerDigits/@ Most[Rest[Divisors[#]]]]], #]&] (* Harvey P. Dale, May 03 2014 *)
CROSSREFS
Sequence in context: A273998 A111685 A302814 * A096293 A355049 A239549
KEYWORD
base,nonn
AUTHOR
Chuck Seggelin (barkeep(AT)plastereddragon.com), Nov 07 2003
EXTENSIONS
More terms (a(7) and a(8)) from Harvey P. Dale, May 03 2014
STATUS
approved