OFFSET
2,3
LINKS
N. Eaton, W. Kook and L. Thoma, Monotonicity for complete graphs, preprint, 2003.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009.
Marko Riedel, Math StackExchange, Derivation of the closed form using combinatorial classes from *Analytic Combinatorics* by Flajolet and Sedgewick.
FORMULA
a(n) = (n - 2) * n^(n - 3) for n > 1.
a(n) = (n - 1)! * [x^(n-1)] LambertW(-x)*(1 + LambertW(-x))/x. - Andrei Asinowski, Sep 07 2015
a(n) = 2*Sum_{i=0..n-3}(binomial(n - 2, i + 1)*((i + 1)^(i + 1)*(n - i - 1)^(n - i - 4))). - Vladimir Kruchinin, Apr 20 2016
a(n) = (n - 2)! [z^(n - 2)] (T(z)/(1 - T(z)))*exp(T(z))^2 with T(z) the tree function T(z) = Sum_{n>=1} n^(n - 1) z^n/n!, which reads in the notation from 'Analytic Combinatorics' (see link) as SEQ_{>=1}(T) x SET(T) x SET(T). - Marko Riedel, Apr 15 2021
EXAMPLE
a(3) = 1 because K_{3}-e is a tree.
From Rainer Rosenthal, Nov 18 2020: (Start)
a(4) = 8 because K_{4}-e has these spanning trees:
A A A A
/ \ / \
o - o o - o o o o o
/ \ \ / \ /
Z Z Z Z
.
4.1 4.2 4.3 4.4
.
.
A A A A
/ \ / \ / \
o o o o o - o o - o
\ / \ /
Z Z Z Z
.
4.5 4.6 4.7 4.8
(End)
MATHEMATICA
f[n_] := (n-2)*n^{n-3}; Table[f[i], {i, 20}]
PROG
(Maxima)
a(n):=2*sum(binomial(n-2, i+1)*((i+1)^(i+1)*(n-i-1)^(n-i-4)), i, 0, n-3); /* Vladimir Kruchinin, Apr 20 2016 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. Eaton, W. Kook, L. Thoma (andrewk(AT)math.uri.edu), Jan 16 2004
STATUS
approved