login
A071720
Number of spanning trees in K_{n}-e, the complete graph on n nodes minus an edge (n > 1).
1
0, 1, 8, 75, 864, 12005, 196608, 3720087, 80000000, 1929229929, 51597803520, 1516443410339, 48594782035968, 1686702392578125, 63050394783186944, 2525667398391013935, 107946249863639334912, 4903504030649559850577, 235929600000000000000000
OFFSET
2,3
FORMULA
a(n) = (n - 2) * n^(n - 3) for n > 1.
a(n) = (n - 1)! * [x^(n-1)] LambertW(-x)*(1 + LambertW(-x))/x. - Andrei Asinowski, Sep 07 2015
a(n) = 2*Sum_{i=0..n-3}(binomial(n - 2, i + 1)*((i + 1)^(i + 1)*(n - i - 1)^(n - i - 4))). - Vladimir Kruchinin, Apr 20 2016
a(n) = (n - 2)! [z^(n - 2)] (T(z)/(1 - T(z)))*exp(T(z))^2 with T(z) the tree function T(z) = Sum_{n>=1} n^(n - 1) z^n/n!, which reads in the notation from 'Analytic Combinatorics' (see link) as SEQ_{>=1}(T) x SET(T) x SET(T). - Marko Riedel, Apr 15 2021
EXAMPLE
a(3) = 1 because K_{3}-e is a tree.
From Rainer Rosenthal, Nov 18 2020: (Start)
a(4) = 8 because K_{4}-e has these spanning trees:
A A A A
/ \ / \
o - o o - o o o o o
/ \ \ / \ /
Z Z Z Z
.
4.1 4.2 4.3 4.4
.
.
A A A A
/ \ / \ / \
o o o o o - o o - o
\ / \ /
Z Z Z Z
.
4.5 4.6 4.7 4.8
(End)
MATHEMATICA
f[n_] := (n-2)*n^{n-3}; Table[f[i], {i, 20}]
PROG
(Maxima)
a(n):=2*sum(binomial(n-2, i+1)*((i+1)^(i+1)*(n-i-1)^(n-i-4)), i, 0, n-3); /* Vladimir Kruchinin, Apr 20 2016 */
CROSSREFS
Sequence in context: A067306 A361528 A261065 * A273998 A111685 A302814
KEYWORD
nonn
AUTHOR
N. Eaton, W. Kook, L. Thoma (andrewk(AT)math.uri.edu), Jan 16 2004
STATUS
approved