login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071718
Expansion of (1+x^2*C)*C^3, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
4
1, 3, 10, 32, 104, 345, 1166, 4004, 13936, 49062, 174420, 625328, 2258416, 8209045, 30008790, 110255100, 406923360, 1507973610, 5608843020, 20931740640, 78354322800, 294127079610, 1106939020044, 4175827174152, 15787544777504
OFFSET
0,2
COMMENTS
a(n)=number of Dyck (n+3)-paths whose third from last upstep initiates a long ascent, n>=1. A long ascent is one consisting of 2 or more upsteps. For example, a(1)=3 counts UDuUUDDD, UDuUDUDD, UDuUDDUD (third from last upstep in small type). - David Callan, Dec 08 2004
For n>0 a(n)=number of Dyck (n+3)-paths whose 5th and 6th steps are DU. For example, a(1)=3 counts UDUUduDD, UUDUduDD, UUUDduDD. - David Scambler, Feb 14 2011
Let X_n be the set of all noncrossing set partitions of an n-element set which either do not contain {n-1,n} as a block, or which do not contain the block {n} whenever 1 and n-1 are in the same block. a(n) is the cardinality of X_{n+2}. For example, a(1)=3 counts 1|2|3, 13|2, 123. - Henri Mühle, Jan 10 2017
LINKS
M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo, I. Nicolas, A Decomposition of Parking Functions by Undesired Spaces, The Electronic Journal of Combinatorics 23(3), 2016.
FORMULA
For n>1, a(n) = 3*A000245(n) + A000344(n) = (5/(n+3) + 9/(n-1))*binomial(2n,n-2).
D-finite with recurrence (n+3)*a(n) + 2*(-2*n-3)*a(n-1) + 2*(-n+1)*a(n-2) + 4*(2*n-5)*a(n-3) = 0. - R. J. Mathar, Aug 25 2013
MATHEMATICA
{1, 3}~Join~Table[(5/(n + 3) + 9/(n - 1))*Binomial[2 n, n - 2], {n, 2, 24}] (* Michael De Vlieger, Jan 10 2017 *)
CROSSREFS
Sequence in context: A033505 A297067 A063782 * A261058 A306295 A356499
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 06 2002
STATUS
approved