login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356499
G.f. A(x) satisfies: x = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)).
2
1, 1, 3, 10, 32, 108, 382, 1419, 5437, 21288, 84618, 340499, 1384711, 5683834, 23520471, 98018975, 410998473, 1732666697, 7339612244, 31224662178, 133353750962, 571527895700, 2457293364403, 10596053295516, 45813536708704, 198570001079591, 862624530201300
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies:
(1) x/P(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n, where P(x) = 1/Product_{n>=1} (1 - x^n) is the partition function (A000041).
(2) x = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), by the Jacobi triple product identity.
a(n) ~ c * d^n / n^(3/2), where d = 4.6003483603736784205277234... and c = 0.69610758028428020320488... - Vaclav Kotesovec, Oct 04 2023
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 32*x^4 + 108*x^5 + 382*x^6 + 1419*x^7 + 5437*x^8 + 21288*x^9 + 84618*x^10 + 340499*x^11 + 1384711*x^12 + ...
such that
x = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * (1 - x^5*A(x))*(1 - x^4/A(x)) * ...
also,
x/P(x) = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
and
x/P(x) = x - x^2 - x^3 + x^6 + x^8 - x^13 - x^16 + x^23 + x^27 - x^36 - x^41 + x^52 + x^58 - x^71 - x^78 + x^93 + x^101 + ...
The following expressions involving g.f. A(x) are all equal:
B(x) = 1 / Product_{n>=1} (1 - x^n*A(x)),
B(x) = (1/x) * Product_{n>=1} (1 - x^(n-1)/A(x)),
B(x) = Sum_{n>=0} x^n * A(x)^n / Product_{k=1..n} (1 - x^k),
B(x) = ((1 - 1/A(x))/x) / [Sum_{n>=0} (x/A(x))^n/Product_{k=1..n} (1 - x^k)],
where
B(x) = 1 + x + 3*x^2 + 9*x^3 + 31*x^4 + 109*x^5 + 396*x^6 + 1472*x^7 + 5613*x^8 + 21868*x^9 + 86690*x^10 + 348422*x^11 + 1416090*x^12 + 5809655*x^13 + 24028116*x^14 + 100081147*x^15 + ...
MATHEMATICA
(* Calculation of constants {d, c}: *) {1/r, Sqrt[(-r)*(((-1 + s)*s^2*(-1 + r*s)* Log[r]*((-1 + r*s) * QPochhammer[s, r]*((-1 + s)*Log[1 - r] + Log[r] + (-1 + s)*QPolyGamma[0, Log[s]/Log[r], r]) - r*s*Log[r]*QPochhammer[s, r]^2*Derivative[0, 1][QPochhammer][1/(r*s), r] + r*(-1 + s)*(-1 + r*s)*Log[r] * Derivative[0, 1][QPochhammer][s, r])) / (2* Pi*(r*QPochhammer[s, r]*(-s*(1 + r - 4*r*s + r*(1 + r)*s^2)* Log[r]^2 + (-1 + s)^2*(-1 + r*s)^2* QPolyGamma[1, Log[s]/Log[r], r] + (-1 + s)^2*(-1 + r*s)^2 * QPolyGamma[1, -1 - Log[s]/Log[r], r]))))]} /. FindRoot[{s*QPochhammer[1/(r*s), r]* QPochhammer[s, r] == (s - 1)*(1 - r*s), (-1 + s)*(-1 + r*s)*(QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, -1 - Log[s]/Log[r], r]) == (1 - r*s^2)*Log[r]}, {r, 1/4}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 04 2023 *)
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( x - prod(n=1, #A, (1 - x^n*Ser(A)) * (1 - x^(n-1)/Ser(A)) ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1], t, P=prod(k=1, n, 1-x^k +x*O(x^n))); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9));
A[#A] = polcoeff( x*P - sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A071718 A261058 A306295 * A134952 A184436 A149028
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 11 2022
STATUS
approved