login
A273833
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 961", based on the 5-celled von Neumann neighborhood.
1
1, 5, 26, 71, 147, 264, 428, 649, 933, 1290, 1726, 2251, 2871, 3596, 4432, 5389, 6473, 7694, 9058, 10575, 12251, 14096, 16116, 18321, 20717, 23314, 26118, 29139, 32383, 35860, 39576, 43541, 47761, 52246, 57002, 62039, 67363, 72984, 78908, 85145, 91701, 98586
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Jun 01 2016: (Start)
a(n) = (16*n^3+48*n^2-10*n-3*((-1)^n-5))/12 for n>1.
a(n) = (8*n^3+24*n^2-5*n+6)/6 for n>1 and even.
a(n) = (8*n^3+24*n^2-5*n+9)/6 for n>1 and odd.
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5) for n>6.
G.f.: (1+2*x+13*x^2+5*x^3-7*x^4+3*x^5-x^6) / ((1-x)^4*(1+x)).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=961; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A273831.
Sequence in context: A273419 A273447 A273406 * A273849 A273781 A048395
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 31 2016
STATUS
approved