login
A273849
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 969", based on the 5-celled von Neumann neighborhood.
1
1, 5, 26, 71, 147, 268, 437, 662, 951, 1312, 1753, 2282, 2907, 3636, 4477, 5438, 6527, 7752, 9121, 10642, 12323, 14172, 16197, 18406, 20807, 23408, 26217, 29242, 32491, 35972, 39693, 43662, 47887, 52376, 57137, 62178, 67507, 73132, 79061, 85302, 91863, 98752
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Jun 01 2016: (Start)
a(n) = (4*n^3+12*n^2+11*n-51)/3 for n>3.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>7.
G.f.: (1+x+12*x^2-7*x^3+7*x^5-11*x^6+5*x^7) / (1-x)^4.
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=969; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A273847.
Sequence in context: A273447 A273406 A273833 * A273781 A048395 A309451
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jun 01 2016
STATUS
approved