login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273834
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 961", based on the 5-celled von Neumann neighborhood.
1
3, 17, 24, 31, 41, 47, 57, 63, 73, 79, 89, 95, 105, 111, 121, 127, 137, 143, 153, 159, 169, 175, 185, 191, 201, 207, 217, 223, 233, 239, 249, 255, 265, 271, 281, 287, 297, 303, 313, 319, 329, 335, 345, 351, 361, 367, 377, 383, 393, 399, 409, 415, 425, 431
OFFSET
0,1
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Jun 01 2016: (Start)
a(n) = 8+(-1)^n+8*n for n>2.
a(n) = 9+8*n for n>2 and even.
a(n) = 7+8*n for n>2 and odd.
a(n) = a(n-1)+a(n-2)-a(n-3) for n>5.
G.f.: (3+14*x+4*x^2-7*x^3+3*x^4-x^5) / ((1-x)^2*(1+x)).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=961; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[on[[i+1]]-on[[i]], {i, 1, Length[on]-1}] (* Difference at each stage *)
CROSSREFS
Cf. A273831.
Sequence in context: A154620 A175385 A174268 * A273850 A060860 A273782
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 31 2016
STATUS
approved