The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273785 Numbers n where a composite c < n exists such that n^(c-1) == 1 (mod c^2), i.e., such that c is a "base-n Wieferich pseudoprime". 2
 17, 26, 33, 37, 49, 65, 73, 80, 81, 82, 97, 99, 101, 109, 113, 129, 145, 146, 161, 163, 168, 170, 177, 181, 182, 193, 197, 199, 201, 209, 217, 224, 225, 226, 239, 241, 242, 244, 251, 253, 257, 268, 273, 289, 293, 301, 305, 321, 323, 325, 337, 353, 360, 361 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Contains n+1 for n in A048111. - Robert Israel, Apr 20 2017 LINKS Robert Israel, Table of n, a(n) for n = 1..5000 EXAMPLE 15 satisfies the congruence 26^(15-1) == 1 (mod 15^2) and 15 < 26, so 26 is a term of the sequence. MAPLE N:= 1000: # to get all terms <= N Res:= {}: for c from 4 to N-1 do if not isprime(c) then for m in map(rhs@op, [msolve(x^(c-1)-1, c^2)]) do if m > c and m <= N then Res:= Res union {m, seq(k*c^2+m, k=1..(N-m)/c^2)} else Res:= Res union {seq(k*c^2+m, k=1..(N-m)/c^2)} fi od fi od: sort(convert(Res, list)); # Robert Israel, Apr 20 2017 MATHEMATICA nn = 361; c = Select[Range@ nn, CompositeQ]; Select[Range@ nn, Function[n, Count[TakeWhile[c, # <= n &], k_ /; Mod[n^(k - 1), k^2] == 1] > 0]] (* Michael De Vlieger, May 30 2016 *) PROG (PARI) is(n) = forcomposite(c=1, n-1, if(Mod(n, c^2)^(c-1)==1, return(1))); return(0) CROSSREFS Cf. A048111, A240719, A244752, A255885, A256517, A267288, A268310, A273339, A273340. Sequence in context: A129910 A259075 A212909 * A171169 A316561 A034963 Adjacent sequences: A273782 A273783 A273784 * A273786 A273787 A273788 KEYWORD nonn AUTHOR Felix Fröhlich, May 30 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 19:43 EDT 2024. Contains 373410 sequences. (Running on oeis4.)