Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Aug 30 2016 10:41:19
%S 3511,10531,1024921,1969111,4633201,409251961,21497866557571,
%T 194900834792501371,4242734772486358591,85488365519409100951,
%U 255375215316698521591,1439538040790707946401,5302306226370307681801,2728334536034592865339299805712535332071,1514527568177848809210967221069334182785475908756709327091,559791068131697034376217936561708451475280017605178661418575551,656640320787712008058581244241126148909602076298405712103045387152988908318802087128873347971063698441918022286945981375193401,25006596829256741460214169653933852849128490077459890197421900490545433220443136638425782879171530372521984642165350019685875922245867185516694881
%N Primes p such that at least one of 3511*p or 3511*p^2 is a Poulet number, i.e., a term of A001567.
%C The prime factors of 2^3510-1 that are congruent to 1 modulo 1755 (the multiplicative order of 2 modulo 3511). - _Max Alekseyev_, Aug 30 2016
%H G. P. Michon, <a href="http://www.numericana.com/answer/pseudo.htm#wieferich">Wieferich primes and some of their Poulet multiples</a>
%H Factordb, <a href="http://factordb.com/index.php?query=2%5E3510-1">Factorization of 2^3510-1</a>
%o (PARI) forprime(p=1, , if(Mod(2, 3511*p)^(3511*p-1)==1 || Mod(2, 3511*p^2)^(3511*p^2-1)==1, print1(p, ", ")))
%Y Cf. A001220, A001567, A273471.
%K nonn,fini,full
%O 1,1
%A _Felix Fröhlich_, May 23 2016
%E Terms a(8) onward from _Max Alekseyev_, Aug 30 2016