login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273472
Primes p such that at least one of 3511*p or 3511*p^2 is a Poulet number, i.e., a term of A001567.
1
3511, 10531, 1024921, 1969111, 4633201, 409251961, 21497866557571, 194900834792501371, 4242734772486358591, 85488365519409100951, 255375215316698521591, 1439538040790707946401, 5302306226370307681801, 2728334536034592865339299805712535332071, 1514527568177848809210967221069334182785475908756709327091, 559791068131697034376217936561708451475280017605178661418575551, 656640320787712008058581244241126148909602076298405712103045387152988908318802087128873347971063698441918022286945981375193401, 25006596829256741460214169653933852849128490077459890197421900490545433220443136638425782879171530372521984642165350019685875922245867185516694881
OFFSET
1,1
COMMENTS
The prime factors of 2^3510-1 that are congruent to 1 modulo 1755 (the multiplicative order of 2 modulo 3511). - Max Alekseyev, Aug 30 2016
PROG
(PARI) forprime(p=1, , if(Mod(2, 3511*p)^(3511*p-1)==1 || Mod(2, 3511*p^2)^(3511*p^2-1)==1, print1(p, ", ")))
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Felix Fröhlich, May 23 2016
EXTENSIONS
Terms a(8) onward from Max Alekseyev, Aug 30 2016
STATUS
approved