login
A273472
Primes p such that at least one of 3511*p or 3511*p^2 is a Poulet number, i.e., a term of A001567.
1
3511, 10531, 1024921, 1969111, 4633201, 409251961, 21497866557571, 194900834792501371, 4242734772486358591, 85488365519409100951, 255375215316698521591, 1439538040790707946401, 5302306226370307681801, 2728334536034592865339299805712535332071, 1514527568177848809210967221069334182785475908756709327091, 559791068131697034376217936561708451475280017605178661418575551, 656640320787712008058581244241126148909602076298405712103045387152988908318802087128873347971063698441918022286945981375193401, 25006596829256741460214169653933852849128490077459890197421900490545433220443136638425782879171530372521984642165350019685875922245867185516694881
OFFSET
1,1
COMMENTS
The prime factors of 2^3510-1 that are congruent to 1 modulo 1755 (the multiplicative order of 2 modulo 3511). - Max Alekseyev, Aug 30 2016
PROG
(PARI) forprime(p=1, , if(Mod(2, 3511*p)^(3511*p-1)==1 || Mod(2, 3511*p^2)^(3511*p^2-1)==1, print1(p, ", ")))
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Felix Fröhlich, May 23 2016
EXTENSIONS
Terms a(8) onward from Max Alekseyev, Aug 30 2016
STATUS
approved