login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273445
a(n) is the number of solutions of the equation n = A001617(k).
2
15, 12, 8, 11, 7, 14, 4, 13, 7, 12, 4, 15, 4, 9, 6, 10, 5, 16, 2, 20, 3, 14, 7, 11, 2, 13, 5, 11, 3, 14, 3, 9, 6, 13, 3, 17, 3, 14, 4, 10, 4, 20, 3, 15, 3, 12, 1, 15, 2, 20, 4, 11, 3, 13, 3, 16, 3, 12, 3, 15, 3, 12, 5, 9, 4, 15, 2, 14, 5, 17, 3, 13
OFFSET
0,1
COMMENTS
The zeros of the sequence are given by A054729. The first five zeros of the sequence have indexes 150, 180, 210, 286, 304.
LINKS
J. A. Csirik, M. Zieve, and J. Wetherell, On the genera of X0(N), arXiv:math/0006096 [math.NT], 2000.
FORMULA
a(n) = card {k, n = A001617(k)}.
EXAMPLE
For n = 0 the a(0) = 15 solutions are:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25 (A091401).
For n = 1 the a(1) = 12 solutions are:
11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49 (A091403).
For n = 2 the a(2) = 8 solutions are:
22, 23, 26, 28, 29, 31, 37, 50 (A091404).
MATHEMATICA
(* b = A001617 *) nmax = 71;
b[n_] := b[n] = If[n < 1, 0, 1 + Sum[ MoebiusMu[ d]^2 n/d / 12 - EulerPhi[ GCD[ d, n/d]] / 2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], _?IntegerQ]/3 -Count[(#^2 + 1)/n& /@ Range[n], _?IntegerQ]/4];
Clear[f];
f[m_] := f[m] = Module[{}, A001617 = Array[b, m]; a[n_] := Count[A001617, n]; Table[a[n], {n, 0, nmax}]];
f[m = nmax]; f[m = m + nmax];
While[Print["m = ", m]; f[m] != f[m - nmax], m = m + nmax];
A273445 = f[m] (* Jean-François Alcover, Dec 16 2018, using Michael Somos' code for A001617 *)
PROG
(PARI)
A000089(n) = {
if (n%4 == 0 || n%4 == 3, return(0));
if (n%2 == 0, n \= 2);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
};
A000086(n) = {
if (n%9 == 0 || n%3 == 2, return(0));
if (n%3 == 0, n \= 3);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
};
A001615(n) = {
my(f = factor(n), fsz = matsize(f)[1],
g = prod(k=1, fsz, (f[k, 1]+1)),
h = prod(k=1, fsz, f[k, 1]));
return((n*g)\h);
};
A001616(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
};
A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
seq(n) = {
my(a = vector(n+1, g, 0), bnd = 12*n + 18*sqrtint(n) + 100, g);
for (k = 1, bnd, g = A001617(k);
if (g <= n, a[g+1]++));
return(a);
};
seq(72)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, May 22 2016
STATUS
approved