login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273442
Number of endofunctions on [2n] with exactly n cycles.
2
1, 3, 95, 5595, 484729, 55545735, 7923937307, 1353285904971, 269240651261153, 61157779792168059, 15617503320899550135, 4429016799173481942427, 1381112305978592892946825, 469689278931628969590283855, 173002815169302537782725771395
OFFSET
0,2
LINKS
FORMULA
a(n) = (2*n)!/n! * [x^(2*n)] (-log(1+LambertW(-x)))^n.
a(n) = A060281(2n,n).
a(n) ~ c * d^n * n^(n-1/2), where d = 2^(4-r) * exp(1-r) * (2-r)^(r-2) * log(s) / (1-1/s)^r = 10.40858458700790823344027277763248832..., where r = 1.2672171362228848078038115564503589940694831794020694762759870935... is the root of the equation r*log(s) * (-1 + (r-s)* log((2*(s-1))/(s*(2-r)))) = 1 - s, where s = -r*LambertW(-1, -exp(-1/r)/r) = 1.5782614856055967129193228312616913... and c = 0.336740238865974324583136447665761... - Vaclav Kotesovec, Nov 01 2016, extended Aug 28 2017
MATHEMATICA
Table[(2*n)!/n! * SeriesCoefficient[(-Log[1+LambertW[-x]])^n, {x, 0, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 01 2016 *)
Flatten[{1, Table[Sum[Binomial[2*n-1, k] * (2*n)^(2*n-1-k) * Abs[StirlingS1[k+1, n]], {k, 0, 2*n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 01 2016 *)
CROSSREFS
Cf. A060281.
Sequence in context: A241752 A093009 A373551 * A322460 A368012 A249787
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 22 2016
STATUS
approved