login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A273374
Squares ending in digit 9.
4
9, 49, 169, 289, 529, 729, 1089, 1369, 1849, 2209, 2809, 3249, 3969, 4489, 5329, 5929, 6889, 7569, 8649, 9409, 10609, 11449, 12769, 13689, 15129, 16129, 17689, 18769, 20449, 21609, 23409, 24649, 26569, 27889, 29929, 31329, 33489, 34969, 37249, 38809
OFFSET
1,1
COMMENTS
A quasipolynomial of order two and degree two: a(n) = 25n^2 - 30n + 9 if n is even and 25n^2 - 20n + 4 if n is odd. - Charles R Greathouse IV, Nov 03 2021
FORMULA
G.f.: x*(9 + 40*x + 102*x^2 + 40*x^3 + 9*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = 6 + (50*(n-1)*n - 5*(2*n-1)*(-1)^n + 1)/2.
a(n) = A063226(n)^2. - Seiichi Manyama, May 25 2016
Sum_{n>=1} 1/a(n) = Pi^2*(3-sqrt(5))/50. - Amiram Eldar, Feb 16 2023
MATHEMATICA
Table[6 + (50 (n - 1) n - 5 (2 n - 1) (-1)^n + 1)/2, {n, 1, 50}]
PROG
(Magma) /* By definition: */ [n^2: n in [0..200] | Modexp(n, 2, 10) eq 9];
(Magma) [6+(50*(n-1)*n-5*(2*n-1)*(-1)^n+1)/2: n in [1..50]];
(PARI) a(n)=(5*n-3+n%2)^2 \\ Charles R Greathouse IV, Nov 03 2021
CROSSREFS
Cf. A017377 (numbers ending in 9), A017379 (cubes ending in 9).
Cf. similar sequences listed in A273373.
Sequence in context: A212503 A295019 A164343 * A020245 A082608 A058031
KEYWORD
nonn,base,easy
AUTHOR
Vincenzo Librandi, May 21 2016
EXTENSIONS
Corrected and extended by Bruno Berselli, May 21 2016
STATUS
approved