login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273156 Product of all parts in Zeckendorf representation of n. 2
0, 1, 2, 3, 3, 5, 5, 10, 8, 8, 16, 24, 24, 13, 13, 26, 39, 39, 65, 65, 130, 21, 21, 42, 63, 63, 105, 105, 210, 168, 168, 336, 504, 504, 34, 34, 68, 102, 102, 170, 170, 340, 272, 272, 544, 816, 816, 442, 442, 884, 1326, 1326, 2210, 2210, 4420, 55, 55, 110, 165 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Peter Kagey, Table of n, a(n) for n = 0..10000

StackExchange user "orlp", Fibonacci products.

EXAMPLE

a(33) = 21*8*3*1 because 33 = 21+8+3+1.

MAPLE

A273156 := proc(n)

    local nred, a, f ;

    if n = 0 then

        0;

    else

        nred := n ;

        a := 1 ;

        while nred > 1 do

            f := A087172(nred) ;

            a := a*f ;

            nred := nred-f ;

        end do:

        a ;

    end if;

end proc: # R. J. Mathar, May 17 2016

MATHEMATICA

t = Fibonacci /@ Range@ 21; {0}~Join~Table[Times @@ If[MemberQ[t, n], {n}, Most@ MapAt[# + 1 &, Abs@ Differences@ FixedPointList[# - First@ Reverse@ TakeWhile[t, Function[k, # >= k]] &, n], -1]], {n, 58}] (* Michael De Vlieger, May 17 2016 *)

a[0]=0; a[n_]:=Block[{m=n, p=1, f, k=0}, While[Fibonacci@ ++k <= n]; While[ m>1, f= Fibonacci@ --k; If[ f<=m, m-=f; p*=f]]; p]; Array[a, 80, 0] (* Giovanni Resta, May 17 2016 *)

PROG

(Haskell)

a273156 = product . a035516_row

CROSSREFS

Cf. A035516, A106530.

Sequence in context: A134408 A051032 A106530 * A294487 A212792 A281363

Adjacent sequences:  A273153 A273154 A273155 * A273157 A273158 A273159

KEYWORD

nonn,look

AUTHOR

Peter Kagey, May 16 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 10:33 EDT 2018. Contains 316414 sequences. (Running on oeis4.)