login
A273101
Numbers n such that n - 43, n - 1, n + 1, n + 43 are consecutive primes.
1
7714800, 8126820, 8341260, 8646060, 9200880, 9422970, 13224270, 13597920, 14012460, 14124630, 15305700, 17008680, 17563920, 18830940, 22603740, 22812150, 24576240, 25197300, 26147040, 26196900, 26932950, 27225240, 30305580, 31214640
OFFSET
1,1
COMMENTS
This sequence is a subsequence of A014574 (average of twin prime pairs), A249674 (divisible by 30) and A256753.
The numbers n - 43 and n + 1 belong to A272176 (p and p + 44 are primes) and A134120 (p such that p + 42 is the next prime).
The numbers n - 43 and n - 1 belong to A271982 (p and p + 42 are primes).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Twin Primes
EXAMPLE
7714800 is the average of the four consecutive primes 7714757, 7714799, 7714801, 7714843.
8126820 is the average of the four consecutive primes 8126777, 8126819, 8126821, 8126863.
PROG
(Python)
from sympy import isprime, prevprime, nextprime
for i in range(0, 60000001, 6):
..if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-43 and nextprime(i+1) == i+43: print (i, end=', ')
(PARI) is(n)=n%30==0 && isprime(n-1) && isprime(n+1) && nextprime(n+2)==n+43 && precprime(n-2)==n-43 \\ Charles R Greathouse IV, May 15 2016
CROSSREFS
Cf. A014574, A077800 (twin primes), A249674, A256753.
Sequence in context: A192105 A233597 A258954 * A124416 A320516 A319809
KEYWORD
nonn
AUTHOR
Karl V. Keller, Jr., May 15 2016
STATUS
approved