|
|
A272904
|
|
Rectangular array, by antidiagonals: row n gives the positions of n in the Fibonacci-products fractal sequence, A272900.
|
|
3
|
|
|
1, 2, 4, 3, 6, 8, 5, 9, 11, 15, 7, 12, 14, 19, 23, 10, 16, 18, 24, 28, 34, 13, 20, 22, 29, 33, 40, 46, 17, 25, 27, 35, 39, 47, 53, 61, 21, 30, 32, 41, 45, 54, 60, 69, 77, 26, 36, 38, 48, 52, 62, 68, 78, 86, 96, 31, 42, 44, 55, 59, 70, 76, 87, 95, 106, 116
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
This array is an interspersion. Every positive integer occurs exactly once, and each row is interspersed by each other row, except for initial terms.
Row 1: A033638 (quarter-squares plus 1)
|
|
LINKS
|
|
|
EXAMPLE
|
Northwest corner:
1 2 3 4 6 9 12 15
5 7 10 13 17 21 26 31
8 11 14 18 2 27 32 38
16 20 25 30 36 42 49 56
23 28 33 39 45 52 59 67
35 41 48 55 63 71 80 89
46 53 60 68 76 85 94 104
|
|
MATHEMATICA
|
z = 500; f[n_] := Fibonacci[n + 1]; u1 = Table[f[n], {n, 1, z}];
u2 = Sort[Flatten[Table[f[i]*f[j], {i, 1, z}, {j, i, z}]]];
uf = Table[Select[Range[80], MemberQ[u1, u2[[i]]/f[#]] &][[1]], {i, 1, z}]
r[n_, k_] := Flatten[Position[uf, n]][[k]]
TableForm[Table[r[n, k], {n, 1, 12}, {k, 1, 12}]] (* A272904 array *)
t = Table[r[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A272904 sequence *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|