login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272892
Taxi-cab numbers n such that n-1 and n+1 are both prime.
2
32832, 513000, 2101248, 8647128, 43570872, 46661832, 152275032, 166383000, 175959000, 351981000, 543449088, 610991208, 809557632, 970168752, 1710972648, 2250265752, 2262814272, 2560837032, 3222013032, 3308144112, 3582836712, 4505949000, 4543936488, 4674301632, 4868489178
OFFSET
1,1
COMMENTS
Taxi-cab numbers that are in A014574.
There are two versions of "taxicab numbers" that are A001235 and A011541. This sequence focuses on the version A001235.
First six terms are 2^6*3^3*19, 2^3*3^3*5^3*19, 2^12*3^3*19, 2^3*3^3*7^2*19*43, 2^3*3^6*31*241, 2^3*3^8*7*127.
This sequence contains many terms that are divisible by 6^3 = 216. But there are also terms that are not divisible by 6^3. For example, 166383*10^3 and 351981*10^3 are terms that are not divisible by 216.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..6385 a(n) for n = 1..88 from Charles R Greathouse IV
EXAMPLE
Taxi-cab number 32832 is a term because 32831 and 32833 are twin primes.
PROG
(PARI) T=thueinit(x^3+1, 1);
isA001235(n)=my(v=thue(T, n)); sum(i=1, #v, v[i][1]>=0 && v[i][2]>=v[i][1])>1
p=2; forprime(q=3, 1e9, if(q-p==2 && isA001235(p+1), print1(p+1", ")); p=q) \\ Charles R Greathouse IV, May 09 2016
CROSSREFS
Sequence in context: A168634 A045061 A183889 * A230524 A168666 A353019
KEYWORD
nonn
AUTHOR
Altug Alkan, May 09 2016
EXTENSIONS
a(7)-a(25) from Charles R Greathouse IV, May 09 2016
STATUS
approved