login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272648
a(n) = A002119(n) mod 7.
2
1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6
OFFSET
0,8
COMMENTS
Periodic with period 14.
LINKS
D. H. Lehmer, Arithmetical periodicities of Bessel functions, Annals of Mathematics, 33 (1932): 143-150. The sequence is on page 149.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,1).
FORMULA
G.f.: (1+x+x^3+x^5+x^6)*(1+6*x^7) / ((1-x)*(1+x)*(1-x+x^2-x^3+x^4-x^5+x^6)*(1+x+x^2+x^3+x^4+x^5+x^6)). - Colin Barker, May 10 2016
a(n) = (-m^6+18*m^5-122*m^4+384*m^3-549*m^2+270*m+24)*(7-5*(-1)^floor(n/7))/48, where m = (n mod 7). - Luce ETIENNE, Sep 21 2018
MAPLE
f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 1 else f(n-2)+(4*n-2)*f(n-1); fi; end;
[seq(f(n) mod 7, n=0..120)];
MATHEMATICA
PadRight[{}, 120, {1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6}] (* Harvey P. Dale, Jun 07 2016 *)
PROG
(PARI) Vec((1+x+x^3+x^5+x^6)*(1+6*x^7)/((1-x)*(1+x)*(1-x+x^2-x^3+x^4-x^5+x^6)*(1+x+x^2+x^3+x^4+x^5+x^6)) + O(x^50)) \\ Colin Barker, May 10 2016
(GAP) b:=[1, -1];; for n in [3..95] do b[n]:=-2*(2*n-3)*b[n-1]+b[n-2]; od; a:=List(b, AbsInt) mod 7; # Muniru A Asiru, Sep 20 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 09 2016
STATUS
approved