OFFSET
0,8
COMMENTS
Periodic with period 14.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
D. H. Lehmer, Arithmetical periodicities of Bessel functions, Annals of Mathematics, 33 (1932): 143-150. The sequence is on page 149.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,1).
FORMULA
G.f.: (1+x+x^3+x^5+x^6)*(1+6*x^7) / ((1-x)*(1+x)*(1-x+x^2-x^3+x^4-x^5+x^6)*(1+x+x^2+x^3+x^4+x^5+x^6)). - Colin Barker, May 10 2016
a(n) = (-m^6+18*m^5-122*m^4+384*m^3-549*m^2+270*m+24)*(7-5*(-1)^floor(n/7))/48, where m = (n mod 7). - Luce ETIENNE, Sep 21 2018
MAPLE
f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 1 else f(n-2)+(4*n-2)*f(n-1); fi; end;
[seq(f(n) mod 7, n=0..120)];
MATHEMATICA
PadRight[{}, 120, {1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6}] (* Harvey P. Dale, Jun 07 2016 *)
PROG
(PARI) Vec((1+x+x^3+x^5+x^6)*(1+6*x^7)/((1-x)*(1+x)*(1-x+x^2-x^3+x^4-x^5+x^6)*(1+x+x^2+x^3+x^4+x^5+x^6)) + O(x^50)) \\ Colin Barker, May 10 2016
(GAP) b:=[1, -1];; for n in [3..95] do b[n]:=-2*(2*n-3)*b[n-1]+b[n-2]; od; a:=List(b, AbsInt) mod 7; # Muniru A Asiru, Sep 20 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 09 2016
STATUS
approved