login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A272649
Compressed discriminator of the factorial numbers.
0
1, 2, 3, 7, 10, 13, 31, 37, 61, 83, 127, 179, 193, 277, 383, 479, 541, 641, 877, 1013, 1423, 2251, 2339, 2557, 2663, 3083, 3301, 5693, 6229, 9091, 9377, 17107, 25447, 31193, 39233, 40879, 46309, 61471, 72089, 81707, 86111, 91243, 116329, 136207, 149459, 163729
OFFSET
1,2
COMMENTS
The discriminator of the factorials is A208494 (replacing a(1) with 1), and the compressed discriminator is defined by reducing blocks of equal/repeated terms to a single instance. Because the discriminator is a monotonically increasing sequence, the compressed discriminator is just the records transform of the discriminator. - R. J. Mathar, May 11 2016
REFERENCES
Olivier Gérard, Posting to Sequence Fans Mailing List, May 08 2016.
LINKS
Arnold, L. K.; Benkoski, S. J.; and McCabe, B. J.; The discriminator (a simple application of Bertrand's postulate). Amer. Math. Monthly 92 (1985), 275-277.
Sajed Haque and Jeffrey Shallit, Discriminators and k-Regular Sequences, arXiv:1605.00092 [cs.DM], 2016.
MATHEMATICA
R[n_, i_] := Union[Table[Mod[k!, i], {k, 1, n}]];
Reap[i0 = 1; Print[1]; Sow[1]; Do[Do[If[Length[R[n, i]] == n, If[i != i0, Print[i]; Sow[i]; i0 = i]; Goto[aa]], {i, 2, Max[n^2, 2]}]; Label[aa]; Continue, {n, 1, 10^4}] ][[2, 1]] (* Jean-François Alcover, Sep 14 2018, after Zhi-Wei Sun in A208494 *)
CROSSREFS
Sequence in context: A341238 A002238 A002255 * A266813 A344232 A370639
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 10 2016
EXTENSIONS
a(32)-a(46) from Alois P. Heinz, May 11 2016
STATUS
approved