login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272594
Numbers n such that the multiplicative group modulo n is the direct product of 4 cyclic groups.
9
120, 168, 240, 264, 280, 312, 336, 360, 408, 420, 440, 456, 480, 504, 520, 528, 552, 560, 600, 616, 624, 660, 672, 680, 696, 720, 728, 744, 760, 780, 792, 816, 880, 888, 912, 920, 924, 936, 952, 960, 984, 1008, 1020, 1032, 1040, 1056, 1064, 1080, 1092, 1104, 1120, 1128, 1140, 1144, 1155, 1160, 1176, 1200
OFFSET
1,1
COMMENTS
Numbers n such that A046072(n) = 4.
MATHEMATICA
A046072[n_] := Which[n == 1 || n == 2, 1,
OddQ[n], PrimeNu[n],
EvenQ[n] && !Divisible[n, 4], PrimeNu[n] - 1,
Divisible[n, 4] && !Divisible[n, 8], PrimeNu[n],
Divisible[n, 8], PrimeNu[n] + 1];
Select[Range[1200], A046072[#] == 4&] (* Jean-François Alcover, Dec 22 2021, after Geoffrey Critzer in A046072 *)
PROG
(PARI) for(n=1, 3*10^3, my(t=#(znstar(n)[2])); if(t==4, print1(n, ", ")));
CROSSREFS
Direct product of k groups: A033948 (k=1), A272592 (k=2), A272593 (k=3), A272595 (k=5), A272596 (k=6), A272597 (k=7), A272598 (k=8), A272599 (k=9).
Sequence in context: A099832 A111399 A030634 * A377156 A189975 A232461
KEYWORD
nonn
AUTHOR
Joerg Arndt, May 05 2016
STATUS
approved