login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377156
Numbers k such that the set of divisors of k that are Zumkeller numbers can be partitioned into two disjoint subsets with equal sum.
1
120, 168, 240, 336, 432, 480, 528, 624, 660, 672, 780, 864, 924, 960, 1020, 1056, 1092, 1140, 1248, 1260, 1296, 1320, 1344, 1380, 1428, 1560, 1596, 1632, 1728, 1740, 1760, 1800, 1824, 1848, 1920, 1932, 2040, 2080, 2100, 2112, 2184, 2208, 2280, 2436, 2464, 2496, 2520, 2592
OFFSET
1,1
COMMENTS
If k is a term, then so is 2k.
Below 6000 terms which are not Zumkeller are: 1296, 1800, 2592, 3528, 3600, 4050, 5184.
LINKS
EXAMPLE
The set D of the divisors of 120 that are Zumkeller numbers is {6,12,20,24,30,40,60,120}. D = {6,30,120} union {12,20,24,40,60}, so 120 is a term.
MATHEMATICA
zQ[n_]:=Module[{d=Divisors[n], t, ds, x}, ds=Plus@@d; If[Mod[ds, 2]>0, False,
t=CoefficientList[Product[1+x^i, {i, d}], x]; t[[1+ds/2]]>0]];
zDiv[n_]:= Select[Divisors[n], zQ]; myQ[n_]:=Select[Subsets[zDiv[n]], #!={}&&EvenQ[(Plus@@zDiv[n])/2]&&Plus@@#==(Plus@@zDiv[n])/2&, 1]!={};
Select[Range[336], myQ] (* zQ by T. D. Noe at A083207 *)
(* second program *)
zumQ[n_] := zumQ[n] = Module[{d = Divisors[n], sum, x}, sum = Plus @@ d; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; q[n_] := Module[{d = Select[Divisors[n], zumQ], sum, x}, sum = Plus @@ d; sum > 0 && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; Select[Range[2600], q] (* Amiram Eldar, Oct 19 2024 *)
CROSSREFS
Cf. A083207.
Sequence in context: A111399 A030634 A272594 * A189975 A232461 A090782
KEYWORD
nonn
AUTHOR
Ivan N. Ianakiev, Oct 18 2024
EXTENSIONS
More terms from Amiram Eldar, Oct 19 2024
STATUS
approved