OFFSET
1,1
COMMENTS
If k is a term, then so is 2k.
Below 6000 terms which are not Zumkeller are: 1296, 1800, 2592, 3528, 3600, 4050, 5184.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1000
EXAMPLE
The set D of the divisors of 120 that are Zumkeller numbers is {6,12,20,24,30,40,60,120}. D = {6,30,120} union {12,20,24,40,60}, so 120 is a term.
MATHEMATICA
zQ[n_]:=Module[{d=Divisors[n], t, ds, x}, ds=Plus@@d; If[Mod[ds, 2]>0, False,
t=CoefficientList[Product[1+x^i, {i, d}], x]; t[[1+ds/2]]>0]];
zDiv[n_]:= Select[Divisors[n], zQ]; myQ[n_]:=Select[Subsets[zDiv[n]], #!={}&&EvenQ[(Plus@@zDiv[n])/2]&&Plus@@#==(Plus@@zDiv[n])/2&, 1]!={};
(* second program *)
zumQ[n_] := zumQ[n] = Module[{d = Divisors[n], sum, x}, sum = Plus @@ d; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; q[n_] := Module[{d = Select[Divisors[n], zumQ], sum, x}, sum = Plus @@ d; sum > 0 && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; Select[Range[2600], q] (* Amiram Eldar, Oct 19 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ivan N. Ianakiev, Oct 18 2024
EXTENSIONS
More terms from Amiram Eldar, Oct 19 2024
STATUS
approved