login
A272592
Numbers n such that the multiplicative group modulo n is the direct product of 2 cyclic groups.
10
8, 12, 15, 16, 20, 21, 28, 30, 32, 33, 35, 36, 39, 42, 44, 45, 51, 52, 55, 57, 63, 64, 65, 66, 68, 69, 70, 75, 76, 77, 78, 85, 87, 90, 91, 92, 93, 95, 99, 100, 102, 108, 110, 111, 114, 115, 116, 117, 119, 123, 124, 126, 128, 129, 130, 133, 135, 138, 141, 143, 145, 147, 148, 150, 153, 154, 155, 159, 161
OFFSET
1,1
COMMENTS
Numbers n such that A046072(n) = 2.
Numbers are of the form p^e*q^f, 2*p^e*q^f, 4p^e, or 2^(e+2) where p and q are distinct odd primes and e,f >= 1. - Charles R Greathouse IV, Jan 09 2022
MATHEMATICA
A046072[n_] := Which[n == 1 || n == 2, 1,
OddQ[n], PrimeNu[n],
EvenQ[n] && !Divisible[n, 4], PrimeNu[n] - 1,
Divisible[n, 4] && !Divisible[n, 8], PrimeNu[n],
Divisible[n, 8], PrimeNu[n] + 1];
Select[Range[200], A046072[#] == 2&] (* Jean-François Alcover, Dec 22 2021, after Geoffrey Critzer in A046072 *)
PROG
(PARI) for(n=1, 10^3, my(t=#(znstar(n)[2])); if(t==2, print1(n, ", ")));
CROSSREFS
Cf. A046072.
Supersequence of A225375.
Direct product of k groups: A033948 (k=1), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272596 (k=6), A272597 (k=7), A272598 (k=8), A272599 (k=9).
Sequence in context: A363863 A033949 A175594 * A062373 A180690 A194592
KEYWORD
nonn
AUTHOR
Joerg Arndt, May 03 2016
STATUS
approved