login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272568
Number of distinct n-step paths of a knight moving on an n X n chessboard, starting to at a corner and not visiting any cell twice.
1
0, 0, 2, 20, 256, 2086, 16376, 121418, 871258, 6077730, 41586532, 280783434, 1875742356, 12432917916, 81868580330, 536476588416, 3501125753910, 22778101455784
OFFSET
1,3
MAPLE
pathCount:=proc(N)
local g1, g2, nStep, gg, nCells, nRow, nCol, nPrev, aNext, nNext, hh, n:
nCells:=N^(2); g1:=[[1]];
for nStep from 1 to N do
g2:=[];
for gg in g1 do
nPrev := gg[-1] ;
nRow:=1+floor((nPrev-1)/(N)); nCol:=1+((nPrev-1) mod N);
aNext:=[];
if nRow-2>=1 then
if nCol-1>=1 then aNext:=[op(aNext), nPrev-2*N-1] fi;
if nCol+1<= N then aNext:=[op(aNext), nPrev-2*N+1] fi;
end if;
if nRow-1>=1 then
if nCol-2>=1 then aNext:=[op(aNext), nPrev-N-2] fi;
if nCol+2<=N then aNext:=[op(aNext), nPrev-N+2] fi;
end if;
if nRow+1<=N then
if nCol-2>=1 then aNext:=[op(aNext), nPrev+N-2] fi;
if nCol+2<=N then aNext:=[op(aNext), nPrev+N+2] fi;
end if;
if nRow+2<=N then
if nCol-1>=1 then aNext:=[op(aNext), nPrev+2*N-1] fi;
if nCol+1<= N then aNext:=[op(aNext), nPrev+2*N+1] fi;
end if;
for nNext in aNext do
if nNext<1 or nNext>nCells or (nNext in gg) then next fi;
g2:=[op(g2), [op(gg), nNext]];
end do:
end do:
g1:=g2;
end do:
#output: comment this block if output is not required
if N>=3 and N<=5 then
hh:=fopen(cat("KnightPaths_", N, ".txt"), WRITE);
for n from 1 to nops(g1) do
fprintf(hh, "%4d: %s\n", n, convert(g1[n], string));
end do:
fclose(hh);
end if;
return nops(g1);
end proc:
lis:=[seq(pathCount(N), N=1..7)];
CROSSREFS
Cf. A272469.
Sequence in context: A099976 A195157 A207151 * A229727 A325409 A155671
KEYWORD
nonn,walk,more
AUTHOR
César Eliud Lozada, May 02 2016
EXTENSIONS
a(9)-a(15) from Giovanni Resta, May 03 2016
a(16)-a(18) from Bert Dobbelaere, Jan 08 2019
STATUS
approved