Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 08 2019 12:29:59
%S 0,0,2,20,256,2086,16376,121418,871258,6077730,41586532,280783434,
%T 1875742356,12432917916,81868580330,536476588416,3501125753910,
%U 22778101455784
%N Number of distinct n-step paths of a knight moving on an n X n chessboard, starting to at a corner and not visiting any cell twice.
%H César Eliud Lozada, <a href="/A272568/a272568.pdf">List of paths for n=1..5</a>
%p pathCount:=proc(N)
%p local g1, g2,nStep,gg, nCells, nRow,nCol,nPrev,aNext,nNext, hh, n:
%p nCells:=N^(2); g1:=[[1]];
%p for nStep from 1 to N do
%p g2:=[];
%p for gg in g1 do
%p nPrev := gg[-1] ;
%p nRow:=1+floor((nPrev-1)/(N)); nCol:=1+((nPrev-1) mod N);
%p aNext:=[];
%p if nRow-2>=1 then
%p if nCol-1>=1 then aNext:=[op(aNext),nPrev-2*N-1] fi;
%p if nCol+1<= N then aNext:=[op(aNext),nPrev-2*N+1] fi;
%p end if;
%p if nRow-1>=1 then
%p if nCol-2>=1 then aNext:=[op(aNext),nPrev-N-2] fi;
%p if nCol+2<=N then aNext:=[op(aNext),nPrev-N+2] fi;
%p end if;
%p if nRow+1<=N then
%p if nCol-2>=1 then aNext:=[op(aNext),nPrev+N-2] fi;
%p if nCol+2<=N then aNext:=[op(aNext),nPrev+N+2] fi;
%p end if;
%p if nRow+2<=N then
%p if nCol-1>=1 then aNext:=[op(aNext),nPrev+2*N-1] fi;
%p if nCol+1<= N then aNext:=[op(aNext),nPrev+2*N+1] fi;
%p end if;
%p for nNext in aNext do
%p if nNext<1 or nNext>nCells or (nNext in gg) then next fi;
%p g2:=[op(g2),[op(gg),nNext]];
%p end do:
%p end do:
%p g1:=g2;
%p end do:
%p #output: comment this block if output is not required
%p if N>=3 and N<=5 then
%p hh:=fopen(cat("KnightPaths_",N,".txt"),WRITE);
%p for n from 1 to nops(g1) do
%p fprintf(hh,"%4d: %s\n",n,convert(g1[n],string));
%p end do:
%p fclose(hh);
%p end if;
%p return nops(g1);
%p end proc:
%p lis:=[seq(pathCount(N),N=1..7)];
%Y Cf. A272469.
%K nonn,walk,more
%O 1,3
%A _César Eliud Lozada_, May 02 2016
%E a(9)-a(15) from _Giovanni Resta_, May 03 2016
%E a(16)-a(18) from _Bert Dobbelaere_, Jan 08 2019