login
A272566
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 501", based on the 5-celled von Neumann neighborhood.
1
1, 9, 14, 58, 71, 183, 208, 416, 453, 793, 842, 1346, 1407, 2107, 2180, 3108, 3193, 4381, 4478, 5958, 6067, 7871, 7992, 10152, 10285, 12833, 12978, 15946, 16103, 19523, 19692, 23596, 23777, 28197, 28390, 33358, 33563, 39111, 39328, 45488, 45717, 52521, 52762
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, May 03 2016: (Start)
a(n) = 1/4*(75-7*(-1)^n)-(25*n)/6-(-3+(-1)^n)*n^2+(2*n^3)/3 for n>4.
a(n) = (4*n^3+12*n^2-25*n+102)/6 for n>4 and even.
a(n) = (4*n^3+24*n^2-25*n+123)/6 for n>4 and odd.
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7) for n>9.
G.f.: (1+8*x+2*x^2+20*x^3+x^4+4*x^5-4*x^7-4*x^8+8*x^9-4*x^11) / ((1-x)^4*(1+x)^3).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=501; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A272564.
Sequence in context: A271814 A272418 A272155 * A271691 A272113 A272293
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 02 2016
STATUS
approved