login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272566
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 501", based on the 5-celled von Neumann neighborhood.
1
1, 9, 14, 58, 71, 183, 208, 416, 453, 793, 842, 1346, 1407, 2107, 2180, 3108, 3193, 4381, 4478, 5958, 6067, 7871, 7992, 10152, 10285, 12833, 12978, 15946, 16103, 19523, 19692, 23596, 23777, 28197, 28390, 33358, 33563, 39111, 39328, 45488, 45717, 52521, 52762
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, May 03 2016: (Start)
a(n) = 1/4*(75-7*(-1)^n)-(25*n)/6-(-3+(-1)^n)*n^2+(2*n^3)/3 for n>4.
a(n) = (4*n^3+12*n^2-25*n+102)/6 for n>4 and even.
a(n) = (4*n^3+24*n^2-25*n+123)/6 for n>4 and odd.
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7) for n>9.
G.f.: (1+8*x+2*x^2+20*x^3+x^4+4*x^5-4*x^7-4*x^8+8*x^9-4*x^11) / ((1-x)^4*(1+x)^3).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=501; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A272564.
Sequence in context: A271814 A272418 A272155 * A271691 A272113 A272293
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 02 2016
STATUS
approved