Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jul 26 2024 21:16:40
%S 1,9,14,58,71,183,208,416,453,793,842,1346,1407,2107,2180,3108,3193,
%T 4381,4478,5958,6067,7871,7992,10152,10285,12833,12978,15946,16103,
%U 19523,19692,23596,23777,28197,28390,33358,33563,39111,39328,45488,45717,52521,52762
%N Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 501", based on the 5-celled von Neumann neighborhood.
%C Initialized with a single black (ON) cell at stage zero.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H Robert Price, <a href="/A272566/b272566.txt">Table of n, a(n) for n = 0..128</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, May 03 2016: (Start)
%F a(n) = 1/4*(75-7*(-1)^n)-(25*n)/6-(-3+(-1)^n)*n^2+(2*n^3)/3 for n>4.
%F a(n) = (4*n^3+12*n^2-25*n+102)/6 for n>4 and even.
%F a(n) = (4*n^3+24*n^2-25*n+123)/6 for n>4 and odd.
%F a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7) for n>9.
%F G.f.: (1+8*x+2*x^2+20*x^3+x^4+4*x^5-4*x^7-4*x^8+8*x^9-4*x^11) / ((1-x)^4*(1+x)^3).
%F (End)
%t CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
%t code=501; stages=128;
%t rule=IntegerDigits[code,2,10];
%t g=2*stages+1; (* Maximum size of grid *)
%t a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
%t ca=a;
%t ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
%t PrependTo[ca,a];
%t (* Trim full grid to reflect growth by one cell at each stage *)
%t k=(Length[ca[[1]]]+1)/2;
%t ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
%t on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
%t Table[Total[Part[on,Range[1,i]]],{i,1,Length[on]}] (* Sum at each stage *)
%Y Cf. A272564.
%K nonn,easy
%O 0,2
%A _Robert Price_, May 02 2016