%I #12 Jul 26 2024 21:16:40
%S 1,9,14,58,71,183,208,416,453,793,842,1346,1407,2107,2180,3108,3193,
%T 4381,4478,5958,6067,7871,7992,10152,10285,12833,12978,15946,16103,
%U 19523,19692,23596,23777,28197,28390,33358,33563,39111,39328,45488,45717,52521,52762
%N Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 501", based on the 5-celled von Neumann neighborhood.
%C Initialized with a single black (ON) cell at stage zero.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H Robert Price, <a href="/A272566/b272566.txt">Table of n, a(n) for n = 0..128</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, May 03 2016: (Start)
%F a(n) = 1/4*(75-7*(-1)^n)-(25*n)/6-(-3+(-1)^n)*n^2+(2*n^3)/3 for n>4.
%F a(n) = (4*n^3+12*n^2-25*n+102)/6 for n>4 and even.
%F a(n) = (4*n^3+24*n^2-25*n+123)/6 for n>4 and odd.
%F a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7) for n>9.
%F G.f.: (1+8*x+2*x^2+20*x^3+x^4+4*x^5-4*x^7-4*x^8+8*x^9-4*x^11) / ((1-x)^4*(1+x)^3).
%F (End)
%t CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
%t code=501; stages=128;
%t rule=IntegerDigits[code,2,10];
%t g=2*stages+1; (* Maximum size of grid *)
%t a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
%t ca=a;
%t ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
%t PrependTo[ca,a];
%t (* Trim full grid to reflect growth by one cell at each stage *)
%t k=(Length[ca[[1]]]+1)/2;
%t ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
%t on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
%t Table[Total[Part[on,Range[1,i]]],{i,1,Length[on]}] (* Sum at each stage *)
%Y Cf. A272564.
%K nonn,easy
%O 0,2
%A _Robert Price_, May 02 2016