login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272354
Decimal expansion of 'kappa', an asymptotic enumeration constant related to unit interval graphs.
0
6, 2, 3, 1, 1, 9, 8, 9, 6, 3, 9, 1, 9, 1, 1, 3, 8, 5, 2, 0, 4, 8, 6, 6, 0, 2, 9, 3, 2, 8, 2, 2, 2, 8, 5, 1, 6, 8, 1, 8, 1, 1, 1, 1, 5, 7, 6, 9, 1, 8, 2, 8, 5, 0, 9, 1, 4, 7, 5, 2, 3, 3, 3, 5, 1, 1, 2, 2, 7, 1, 6, 1, 2, 9, 9, 9, 8, 5, 8, 2, 9, 4, 3, 3, 0, 8, 7, 4, 5, 0, 7, 3, 1, 7, 5, 7, 4, 8, 7
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6.7 More Graph Varieties, p. 309.
FORMULA
kappa = exp(-sqrt(3)/4)*exp(-Sum_{j >= 2} psi(4^(-j))/j), where psi(x)=(1 + 2*x - sqrt(1 - 4*x)*sqrt(1 - 4*x^2))/(4*sqrt(1 - 4*x^2)).
EXAMPLE
0.6231198963919113852048660293282228516818111157691828509147523335...
MATHEMATICA
digits = 99; psi[x_] := (1 + 2*x - Sqrt[1 - 4*x]*Sqrt[1 - 4*x^2])/(4*Sqrt[1 - 4*x^2]);
kappa = Exp[-Sqrt[3]/4]*Exp[-NSum[psi[4^(-j)]/j, {j, 2, Infinity}, NSumTerms -> 200, WorkingPrecision -> digits + 5]]; RealDigits[kappa, 10, digits][[1]]
CROSSREFS
Sequence in context: A065280 A247672 A188726 * A353121 A196552 A062614
KEYWORD
nonn,cons
AUTHOR
STATUS
approved