login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272352
a(n) is the number of ways of putting n labeled balls into 2 indistinguishable boxes such that each box contains at least 3 balls.
6
10, 35, 91, 210, 456, 957, 1969, 4004, 8086, 16263, 32631, 65382, 130900, 261953, 524077, 1048344, 2096898, 4194027, 8388307, 16776890, 33554080, 67108485, 134217321, 268435020, 536870446, 1073741327, 2147483119, 4294966734, 8589933996, 17179868553
OFFSET
6,1
LINKS
I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013 (page 16).
FORMULA
G.f.: x^6*(10 - 15*x + 6*x^2)/((1 - x)^3*(1 - 2*x)).
a(n) = (2^n - 2 - 2*n - 2*binomial(n, 2))/2.
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4), for n > 3.
E.g.f.: (2 - 2*exp(x) + 2*x + x^2)^2/8. - Stefano Spezia, Jul 25 2021
EXAMPLE
For n=6, label the balls A, B, C, D, E, and F. Then each box must contain exactly 3 balls, and the 10 ways are ABC/DEF, ABD/CEF, ABE/CDF, ABF/CDE, ACD/BEF, ACE/BDF, ACF/BDE, ADE/BCF, ADF/BCE, AEF/BCD. - Michael B. Porter, Jul 01 2016
MATHEMATICA
Table[1/2 (2^n - 2 - 2 n - 2 Binomial[n, 2]), {n, 6, 40}]
LinearRecurrence[{5, -9, 7, -2}, {10, 35, 91, 210}, 30] (* Harvey P. Dale, Mar 29 2018 *)
PROG
(Magma) [(2^n-2-2*n-2*Binomial(n, 2))/2: n in [6..50]];
CROSSREFS
Cf. A000478, A058844, A261724, A272982, column 2 of A059022.
Column k=3 of A201385 (shifted).
Sequence in context: A000447 A052472 A331429 * A358248 A309883 A049736
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 11 2016
STATUS
approved