login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272182
Decimal expansion of p_3 (so named by S. Finch), a probability related to Vallée's constant.
0
1, 0, 2, 7, 8, 1, 6, 4, 7, 7, 9, 0, 6, 6, 5, 9, 6, 4, 3, 2, 3, 8, 2, 9, 5, 3, 4, 0, 9, 8, 7, 8, 3, 2, 5, 4, 4, 6, 3, 5, 4, 7, 1, 5, 8, 4, 2, 3, 7, 6, 3, 8, 9, 0, 9, 2, 3, 7, 3, 2, 4, 0, 5, 4, 3, 9, 6, 1, 9, 1, 6, 2, 9, 1, 3, 2, 2, 9, 2, 8, 9, 9, 9, 4, 0, 9, 5
OFFSET
-1,3
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.19 Vallée's Constant, p. 161.
FORMULA
Equals Sum_{i >= 1, j >= 1, k >= 1} 1 / ((i*j*k + i + k)^2 * (i*j*k + i*j + i + k + 1)^2).
Equals Sum_{i >= 1, j >= 1} (2*PolyGamma(1,i/(i*j + 1) + 1) - ((i*j + 1) * (i*(3*j + 2) + 3))/(i*j + i + 1)^2)/(i*j + 1)^4, where PolyGamma(1,x) is the derivative of the digamma function psi(x).
EXAMPLE
0.010278164779066596432382953409878325446354715842376389092373240543961916291...
MATHEMATICA
p3 = NSum[(2*PolyGamma[1, i/(i*j + 1) + 1] - ((i*j + 1)*(i*(3*j + 2) + 3))/(i*j + i + 1)^2)/(i*j + 1)^4, {i, 1, 10^4}, {j, 1, 10^4 - i}, NSumTerms -> 10^3]; Join[{0}, RealDigits[p3, 10, 10][[1]]]
PROG
(Magma) nMax:=120; M:=75; SetDefaultRealField(RealField(160)); S:=[]; sum:=0.0; for n in [1..nMax] do for i in [1..n] do for j in [1..n] do if (i eq n) or (j eq n) then kMin:=1; else kMin:=n; end if; for k in [kMin..n] do sum:=sum+1/((i*j*k + i + k)^2 * (i*j*k + i*j + i + k + 1)^2); end for; end for; end for; S[n]:=sum; end for; t:=[]; for n in [1..#S] do t[n]:=S[n]*n^M; end for; for m in [1..M] do for j in [1..#S-m] do t[j]:=(t[j+1]-t[j])/m; if m eq M then ChangePrecision(t[j], 90); end if; end for; end for; // Jon E. Schoenfield, Feb 18 2018
CROSSREFS
Cf. A143302, A143303, A145426 (p_1), A247318 (p_2).
Sequence in context: A306417 A011416 A086658 * A175577 A189039 A198815
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More digits from Jon E. Schoenfield, Feb 18 2018
STATUS
approved