login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272126
a(n) = 120*n^3 + 60*n^2 + 2*n + 1.
4
1, 183, 1205, 3787, 8649, 16511, 28093, 44115, 65297, 92359, 126021, 167003, 216025, 273807, 341069, 418531, 506913, 606935, 719317, 844779, 984041, 1137823, 1306845, 1491827, 1693489, 1912551, 2149733, 2405755, 2681337, 2977199, 3294061, 3632643, 3993665
OFFSET
0,2
COMMENTS
This is the polynomial Qbar(3,n) in Brent. See A160485 for the triangle of coefficients (with signs) of the Qbar polynomials. - Peter Bala, Jan 22 2019
LINKS
Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014. (page 16).
Richard P. Brent, Generalising Tuenter's binomial sums, Journal of Integer Sequences, 18 (2015), Article 15.3.2.
FORMULA
O.g.f.: (1 + 179*x + 479*x^2 + 61*x^3)/(1-x)^4.
E.g.f.: (1 + 182*x + 420*x^2 + 120*x^3)*exp(x).
a(n) = (2*n+1)*(60*n^2+1).
a(n) = (2*n+1) * A158673(n).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3.
See page 7 in Brent's paper:
a(n) = (2*n+1)^2*A014641(n) - 2*n*(2*n+1)*A014641(n-1).
A272127(n) = (2*n+1)^2*a(n) - 2*n*(2*n+1)*a(n-1).
From Peter Bala, Jan 22 2019: (Start)
a(n) = 1/4^n * Sum_{k = 0..n} (2*k + 1)^6 * binomial(2*n + 1, n - k).
a(n-1) = 2/4^n * binomial(2*n,n) * ( 1 + 3^6*(n - 1)/(n + 1) + 5^6*(n - 1)*(n - 2)/((n + 1)*(n + 2)) + 7^6*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)) + ... ). (End)
MATHEMATICA
Table[120 n^3 + 60 n^2 + 2 n + 1, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {1, 183, 1205, 3787}, 40] (* Harvey P. Dale, Nov 08 2020 *)
PROG
(Magma) [120*n^3 + 60*n^2 + 2*n + 1: n in [0..50]];
(PARI) a(n) = 120*n^3 + 60*n^2 + 2*n + 1; \\ Altug Alkan, Apr 30 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 25 2016
STATUS
approved