The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271811 Number of non-abelian groups of order prime(n)^6. 2
256, 493, 673, 849, 1181, 1465, 1933, 2253, 2865, 4057, 4529, 6001, 7053, 7653, 8841, 10897, 13125, 14001, 16509, 18281, 19285, 22233, 24285, 27637, 32461, 34953, 36273, 38901, 40345, 43117, 53769, 56981, 62053, 63813, 72817, 74729, 80521, 86493, 90561, 96937, 103485, 105801, 117281 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
A000688(p^6) is 11 for all prime p.
LINKS
M. F. Newman, E. A. O'Brien and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278 (2004), 383-401.
FORMULA
a(n) = A232106(n) - 11.
a(n) = A060689(prime(n)^6) = A060689(A030516(n)).
For a prime p > 3, the number of non-abelian groups of order p^6 is 3p^2 + 39p + 333 + 24 gcd(p - 1, 3) + 11 gcd(p - 1, 4) + 2 gcd(p - 1, 5).
MATHEMATICA
Table[FiniteGroupCount[#] - FiniteAbelianGroupCount[#] &[Prime[n]^6], {n, 43}] (* Michael De Vlieger, Apr 15 2016, after Vladimir Joseph Stephan Orlovsky at A060689 *)
PROG
(PARI) a(n) = if (n==1, 256, if (n==2, 493, my(p=prime(n)); 3*p^2 + 39*p + 333 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5)));
(GAP) A271811 := Concatenation([256, 493], List(Filtered([5..10^4], IsPrime), p -> 3 * p^2 + 39 * p + 333 + 24 * Gcd(p-1, 3) + 11 * Gcd(p-1, 4) + 2 * Gcd(p-1, 5))); # Muniru A Asiru, Nov 18 2017
CROSSREFS
Sequence in context: A223064 A206206 A206199 * A255998 A309092 A043336
KEYWORD
nonn
AUTHOR
Altug Alkan, Apr 14 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 04:06 EDT 2024. Contains 372720 sequences. (Running on oeis4.)