login
A206206
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X3 or 3X2 subblock having exactly one clockwise edge increases
9
256, 480, 480, 1768, 1060, 1768, 7388, 3008, 3008, 7388, 29724, 9464, 5136, 9464, 29724, 117084, 22576, 11832, 11832, 22576, 117084, 468968, 67968, 27400, 32920, 27400, 67968, 468968, 1878808, 192808, 60800, 70168, 70168, 60800, 192808
OFFSET
1,1
COMMENTS
Table starts
.....256....480...1768...7388...29724..117084..468968..1878808..7493008
.....480...1060...3008...9464...22576...67968..192808...496088..1475768
....1768...3008...5136..11832...27400...60800..145208...346080...775944
....7388...9464..11832..32920...70168..109720..337896...728704..1137208
...29724..22576..27400..70168..118936..236488..713408..1226384..2475328
..117084..67968..60800.109720..236488..484704.1080648..2383520..5023520
..468968.192808.145208.337896..713408.1080648.3270240..7008160.10936160
.1878808.496088.346080.728704.1226384.2383520.7008160.11893600.23648800
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) +17*a(n-3) -5*a(n-4) +2*a(n-5) for n>6
k=2: a(n) = 3*a(n-2) +14*a(n-3) -3*a(n-4) +a(n-5) +a(n-6) +a(n-7) for n>9
k=3: a(n) = 10*a(n-3) +5*a(n-4) +a(n-5) +2*a(n-8) +2*a(n-10) for n>18
k=4: a(n) = 10*a(n-3) +a(n-9) for n>18
k=5: a(n) = 10*a(n-3) for n>15
k=6: a(n) = 10*a(n-3) for n>16
k=7: a(n) = 10*a(n-3) for n>17
apparently a(n) = 10*a(n-3) for k>4 and n>k+5
EXAMPLE
Some solutions for n=4 k=3
..3..3..3..2....1..3..2..2....1..0..2..2....3..2..2..0....3..0..0..0
..3..0..0..2....1..1..2..2....1..1..2..2....0..2..2..2....3..3..0..0
..0..0..0..1....1..1..1..2....1..1..1..2....0..0..2..2....3..3..3..0
..0..0..1..1....0..1..1..1....3..1..1..1....0..0..0..2....0..3..3..0
..1..1..1..1....0..0..1..1....3..3..1..1....2..0..0..1....0..0..0..0
CROSSREFS
Sequence in context: A221259 A223693 A223064 * A206199 A271811 A255998
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 04 2012
STATUS
approved